Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
HPCAT, Geophysical Laboratory, Carnegie Institute of Washington, Argonne, IL, 60439, USA.
Nat Commun. 2017 Oct 31;8(1):1198. doi: 10.1038/s41467-017-01411-9.
The behavior of the f-electrons in the lanthanides and actinides governs important macroscopic properties but their pressure and temperature dependence is not fully explored. Cerium with nominally just one 4f electron offers a case study with its iso-structural volume collapse from the γ-phase to the α-phase ending in a critical point (p , V , T ), unique among the elements, whose mechanism remains controversial. Here, we present longitudinal (c ) and transverse sound speeds (c ) versus pressure from higher than room temperature to T for the first time. While c experiences a non-linear dip at the volume collapse, c shows a step-like change. This produces very peculiar macroscopic properties: the minimum in the bulk modulus becomes more pronounced, the step-like increase of the shear modulus diminishes and the Poisson's ratio becomes negative-meaning that cerium becomes auxetic. At the critical point itself cerium lacks any compressive strength but offers resistance to shear.
镧系元素和锕系元素中 f 电子的行为决定了重要的宏观性质,但它们的压力和温度依赖性尚未得到充分探索。具有名义上只有一个 4f 电子的铈提供了一个案例研究,其同构体积从 γ 相坍塌到 α 相,最终在元素中独一无二的临界点(p、V、T)结束,其机制仍存在争议。在这里,我们首次呈现了高于室温至 T 时的纵向(c)和横向声速(c)与压力的关系。虽然 c 在体积坍塌时经历了非线性下降,但 c 显示出阶跃式变化。这产生了非常特殊的宏观性质:体弹性模量的最小值变得更加明显,剪切模量的阶跃式增加减小,泊松比变为负值-这意味着铈具有负泊松比,即各向异性。在临界点本身,铈没有任何抗压强度,但具有抗剪切能力。