Suppr超能文献

化学结构活性关系(ChemSAR):一个用于分子结构活性关系建模的在线流水线平台。

ChemSAR: an online pipelining platform for molecular SAR modeling.

作者信息

Dong Jie, Yao Zhi-Jiang, Zhu Min-Feng, Wang Ning-Ning, Lu Ben, Chen Alex F, Lu Ai-Ping, Miao Hongyu, Zeng Wen-Bin, Cao Dong-Sheng

机构信息

Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Yuelu District, Changsha, People's Republic of China.

The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China.

出版信息

J Cheminform. 2017 May 4;9(1):27. doi: 10.1186/s13321-017-0215-1.

Abstract

BACKGROUND

In recent years, predictive models based on machine learning techniques have proven to be feasible and effective in drug discovery. However, to develop such a model, researchers usually have to combine multiple tools and undergo several different steps (e.g., RDKit or ChemoPy package for molecular descriptor calculation, ChemAxon Standardizer for structure preprocessing, scikit-learn package for model building, and ggplot2 package for statistical analysis and visualization, etc.). In addition, it may require strong programming skills to accomplish these jobs, which poses severe challenges for users without advanced training in computer programming. Therefore, an online pipelining platform that integrates a number of selected tools is a valuable and efficient solution that can meet the needs of related researchers.

RESULTS

This work presents a web-based pipelining platform, called ChemSAR, for generating SAR classification models of small molecules. The capabilities of ChemSAR include the validation and standardization of chemical structure representation, the computation of 783 1D/2D molecular descriptors and ten types of widely-used fingerprints for small molecules, the filtering methods for feature selection, the generation of predictive models via a step-by-step job submission process, model interpretation in terms of feature importance and tree visualization, as well as a helpful report generation system. The results can be visualized as high-quality plots and downloaded as local files.

CONCLUSION

ChemSAR provides an integrated web-based platform for generating SAR classification models that will benefit cheminformatics and other biomedical users. It is freely available at: http://chemsar.scbdd.com . Graphical abstract .

摘要

背景

近年来,基于机器学习技术的预测模型在药物发现中已被证明是可行且有效的。然而,要开发这样一个模型,研究人员通常必须组合多种工具并经历几个不同的步骤(例如,使用RDKit或ChemoPy包进行分子描述符计算,使用ChemAxon Standardizer进行结构预处理,使用scikit-learn包进行模型构建,以及使用ggplot2包进行统计分析和可视化等)。此外,完成这些工作可能需要很强的编程技能,这对没有接受过计算机编程高级培训的用户构成了严峻挑战。因此,一个集成了许多选定工具的在线流水线平台是一个有价值且高效的解决方案,可以满足相关研究人员的需求。

结果

这项工作展示了一个基于网络的流水线平台,称为ChemSAR,用于生成小分子的SAR分类模型。ChemSAR的功能包括化学结构表示的验证和标准化、783种一维/二维小分子分子描述符和十种广泛使用的指纹的计算、特征选择的过滤方法、通过逐步提交作业过程生成预测模型、根据特征重要性和树状可视化进行模型解释,以及一个有用的报告生成系统。结果可以可视化为高质量的图表并作为本地文件下载。

结论

ChemSAR提供了一个基于网络的集成平台,用于生成SAR分类模型,这将使化学信息学和其他生物医学用户受益。它可在以下网址免费获取:http://chemsar.scbdd.com 。图形摘要 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4566/5418185/93a87abdeb64/13321_2017_215_Figa_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验