Suppr超能文献

用于肺癌的数据驱动型多靶点药物设计:针对间变性淋巴瘤激酶(ALK)、甲硫氨酸(MET)和表皮生长因子受体(EGFR)的分析

Data driven polypharmacological drug design for lung cancer: analyses for targeting ALK, MET, and EGFR.

作者信息

Narayanan Dilip, Gani Osman A B S M, Gruber Franz X E, Engh Richard A

机构信息

The Norwegian Structural Biology Center, Department of Chemistry, Faculty of Science, UiT The Arctic University of Norway, Tromsø, Norway.

出版信息

J Cheminform. 2017 Jul 4;9(1):43. doi: 10.1186/s13321-017-0229-8.

Abstract

Drug design of protein kinase inhibitors is now greatly enabled by thousands of publicly available X-ray structures, extensive ligand binding data, and optimized scaffolds coming off patent. The extensive data begin to enable design against a spectrum of targets (polypharmacology); however, the data also reveal heterogeneities of structure, subtleties of chemical interactions, and apparent inconsistencies between diverse data types. As a result, incorporation of all relevant data requires expert choices to combine computational and informatics methods, along with human insight. Here we consider polypharmacological targeting of protein kinases ALK, MET, and EGFR (and its drug resistant mutant T790M) in non small cell lung cancer as an example. Both EGFR and ALK represent sources of primary oncogenic lesions, while drug resistance arises from MET amplification and EGFR mutation. A drug which inhibits these targets will expand relevant patient populations and forestall drug resistance. Crizotinib co-targets ALK and MET. Analysis of the crystal structures reveals few shared interaction types, highlighting proton-arene and key CH-O hydrogen bonding interactions. These are not typically encoded into molecular mechanics force fields. Cheminformatics analyses of binding data show EGFR to be dissimilar to ALK and MET, but its structure shows how it may be co-targeted with the addition of a covalent trap. This suggests a strategy for the design of a focussed chemical library based on a pan-kinome scaffold. Tests of model compounds show these to be compatible with the goal of ALK, MET, and EGFR polypharmacology.

摘要

如今,数千个可公开获取的X射线结构、大量的配体结合数据以及已过专利保护期的优化骨架,极大地推动了蛋白激酶抑制剂的药物设计。这些丰富的数据开始使针对一系列靶点(多药理学)的设计成为可能;然而,这些数据也揭示了结构的异质性、化学相互作用的微妙之处以及不同数据类型之间明显的不一致性。因此,整合所有相关数据需要专家做出选择,将计算方法和信息学方法与人类洞察力结合起来。在这里,我们以非小细胞肺癌中蛋白激酶ALK、MET和EGFR(及其耐药突变体T790M)的多药理学靶向为例。EGFR和ALK都是原发性致癌病变的来源,而耐药性则源于MET扩增和EGFR突变。一种抑制这些靶点的药物将扩大相关患者群体并预防耐药性。克唑替尼同时靶向ALK和MET。对晶体结构的分析显示,很少有共同的相互作用类型,突出了质子-芳烃和关键的CH-O氢键相互作用。这些通常不会被编码到分子力学力场中。对结合数据的化学信息学分析表明,EGFR与ALK和MET不同,但其结构显示了如何通过添加共价陷阱来实现共同靶向。这为基于全激酶组骨架设计聚焦化学文库提出了一种策略。对模型化合物的测试表明,这些化合物与ALK、MET和EGFR多药理学的目标兼容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3175/5496928/671d194c9bad/13321_2017_229_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验