Suppr超能文献

电池中锂金属的强烈织构化。

Strong texturing of lithium metal in batteries.

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.

Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12138-12143. doi: 10.1073/pnas.1708224114. Epub 2017 Oct 30.

Abstract

Lithium, with its high theoretical specific capacity and lowest electrochemical potential, has been recognized as the ultimate negative electrode material for next-generation lithium-based high-energy-density batteries. However, a key challenge that has yet to be overcome is the inferior reversibility of Li plating and stripping, typically thought to be related to the uncontrollable morphology evolution of the Li anode during cycling. Here we show that Li-metal texturing (preferential crystallographic orientation) occurs during electrochemical deposition, which governs the morphological change of the Li anode. X-ray diffraction pole-figure analysis demonstrates that the texture of Li deposits is primarily dependent on the type of additive or cross-over molecule from the cathode side. With adsorbed additives, like LiNO and polysulfide, the lithium deposits are strongly textured, with Li (110) planes parallel to the substrate, and thus exhibit uniform, rounded morphology. A growth diagram of lithium deposits is given to connect various texture and morphology scenarios for different battery electrolytes. This understanding of lithium electrocrystallization from the crystallographic point of view provides significant insight for future lithium anode materials design in high-energy-density batteries.

摘要

锂因其具有高的理论比容量和最低的电化学电势,已被认为是下一代基于锂的高能量密度电池的终极负极材料。然而,一个尚未克服的关键挑战是锂电镀和剥离的可逆性较差,通常认为这与锂阳极在循环过程中不可控的形态演变有关。在这里,我们表明,在电化学沉积过程中会发生锂金属织构化(优先晶面取向),这控制着锂阳极的形态变化。X 射线衍射极图分析表明,锂沉积物的织构主要取决于来自阴极侧的添加剂或交叉分子的类型。对于吸附添加剂,如 LiNO 和多硫化物,锂沉积物具有强烈的织构,Li(110)面与基底平行,因此表现出均匀、圆形的形态。给出了一个锂沉积物的生长图,以连接不同电池电解质的各种织构和形态情况。从晶体学角度对锂电结晶的这种理解为高能密度电池中未来的锂阳极材料设计提供了重要的启示。

相似文献

1
Strong texturing of lithium metal in batteries.电池中锂金属的强烈织构化。
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12138-12143. doi: 10.1073/pnas.1708224114. Epub 2017 Oct 30.
2
Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.叠氮化锂作为全固态锂硫电池的电解质添加剂。
Angew Chem Int Ed Engl. 2017 Nov 27;56(48):15368-15372. doi: 10.1002/anie.201709305. Epub 2017 Oct 25.
3
Robust Pinhole-free LiN Solid Electrolyte Grown from Molten Lithium.由熔融锂生长出的坚固无针孔锂氮固体电解质。
ACS Cent Sci. 2018 Jan 24;4(1):97-104. doi: 10.1021/acscentsci.7b00480. Epub 2017 Dec 8.
7
High-capacity, low-tortuosity, and channel-guided lithium metal anode.高容量、低曲折度且具有通道导向的锂金属负极。
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3584-3589. doi: 10.1073/pnas.1618871114. Epub 2017 Mar 20.

引用本文的文献

10
Origin of Heterogeneous Stripping of Lithium in Liquid Electrolytes.液体电解质中锂的不均匀剥离的起源。
ACS Nano. 2023 Jun 13;17(11):10218-10228. doi: 10.1021/acsnano.3c00329. Epub 2023 May 31.

本文引用的文献

1
Reviving the lithium metal anode for high-energy batteries.为高能电池振兴金属锂阳极。
Nat Nanotechnol. 2017 Mar 7;12(3):194-206. doi: 10.1038/nnano.2017.16.
2
Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal.电沉积锂金属的纳观形核与生长。
Nano Lett. 2017 Feb 8;17(2):1132-1139. doi: 10.1021/acs.nanolett.6b04755. Epub 2017 Jan 13.
8
Electrolytes and interphases in Li-ion batteries and beyond.锂离子电池及其他电池中的电解质和界面
Chem Rev. 2014 Dec 10;114(23):11503-618. doi: 10.1021/cr500003w. Epub 2014 Oct 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验