Cabahug-Zuckerman Pamela, Stout Randy F, Majeska Robert J, Thi Mia M, Spray David C, Weinbaum Sheldon, Schaffler Mitchell B
Department of Biomedical Engineering, The City College of New York, New York, New York.
Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York.
J Orthop Res. 2018 Feb;36(2):642-652. doi: 10.1002/jor.23792. Epub 2017 Nov 28.
Osteocyte processes are an order of magnitude more sensitive to mechanical loading than their cell bodies. The mechanisms underlying this remarkable mechanosensitivity are not clear, but may be related to the infrequent α β integrin sites where the osteocyte cell processes attach to canalicular walls. These sites develop dramatically elevated strains during load-induced fluid flow in the lacunar-canalicular system and were recently shown to be primary sites for osteocyte-like MLO-Y4 cell mechanotransduction. These α β integrin sites lack typical integrin transduction mechanisms. Rather, stimulation at these sites alters Ca signaling, ATP release and membrane potential. In the current studies, we tested the hypothesis that in authentic osteocytes in situ, key membrane proteins implicated in osteocyte mechanotransduction are preferentially localized at or near to β integrin-foci. We analyzed these spatial relationships in mouse bone osteocytes using immunohistochemistry combined with Structured Illumination Super Resolution Microscopy, a method that permits structural resolution at near electron microscopy levels in tissue sections. We discovered that the purinergic channel pannexin1, the ATP-gated purinergic receptor P2 × 7R and the low voltage transiently opened T-type calcium channel CaV3.2-1 all reside in close proximity to β integrin attachment foci on osteocyte processes, suggesting a specialized mechanotransduction complex at these sites. We further confirmed this observation on isolated osteocytes in culture using STochasitc Optical Resonance Microscopy. These findings identify a possible structural basis for the unique mechanosensation and transduction capabilities of the osteocyte process. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:642-652, 2018.
骨细胞突起对机械负荷的敏感性比其细胞体高一个数量级。这种显著的机械敏感性背后的机制尚不清楚,但可能与骨细胞突起附着于骨小管壁的不常见的αβ整合素位点有关。在腔隙-骨小管系统中,这些位点在负荷诱导的流体流动过程中会产生显著升高的应变,最近的研究表明,这些位点是骨细胞样MLO-Y4细胞机械转导的主要部位。这些αβ整合素位点缺乏典型的整合素转导机制。相反,这些位点的刺激会改变钙信号、ATP释放和膜电位。在当前的研究中,我们测试了这样一个假设:在原位的真实骨细胞中,参与骨细胞机械转导的关键膜蛋白优先定位于β整合素焦点处或其附近。我们使用免疫组织化学结合结构照明显微术分析了小鼠骨细胞中的这些空间关系,结构照明显微术是一种能够在组织切片中实现接近电子显微镜水平的结构分辨率的方法。我们发现,嘌呤能通道泛连接蛋白1、ATP门控嘌呤能受体P2×7R和低电压瞬时开放的T型钙通道CaV3.2-1都紧邻骨细胞突起上的β整合素附着焦点,这表明这些位点存在一个特殊的机械转导复合体。我们使用随机光学共振显微镜对培养的分离骨细胞进一步证实了这一观察结果。这些发现确定了骨细胞突起独特的机械感觉和转导能力的一个可能的结构基础。©2017骨科研究协会。由威利期刊公司出版。《矫形外科学研究》36:642-652,2018年。