Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena 07745, Germany.
J Integr Plant Biol. 2018 Mar;60(3):242-261. doi: 10.1111/jipb.12609. Epub 2018 Jan 8.
To study the local and systemic effects of arbuscular mycorrhizal fungal (AMF) colonization, Nicotiana attenuata plants impaired in their interactions with AMF due to silencing of a calcium- and calmodulin dependent protein kinase (inverted repreat (ir)CCaMK) were grown competitively in pairs with empty vector (EV) plants, with and without two different types of inoculum. When inoculated, EV plants strongly outperformed irCCaMK plants. Foliar transcript profiling revealed that AMF colonization significantly changed gene expression of P-starvation and -transporter genes in irCCaMK plants. The Pht1 family phosphate transporter NaPT5 was not only specifically induced in roots after AMF colonization, but also in leaves of AMF-colonized irCCaMK plants, and in plants grown under low Pi conditions in the absence of AMF. The P-starvation signature of inoculated irCCaMK plants corresponded with increases in selected amino acids and phenolic compounds in leaves. We also found a strong AMF-induced increase in amino acids and phenolic metabolites in roots. Plants impaired in their interactions with AMF clearly have a fitness disadvantage when competing for limited soil nutrients with a fully functional isogenic line. The additional role of the AMF-induced Pht1 family transporter NaPT5 in leaves under P-starvation conditions will require further experiments to fully resolve.
为了研究丛枝菌根真菌(AMF)定植的局部和系统效应,由于沉默钙和钙调蛋白依赖蛋白激酶(反转重复(ir)CCaMK)而与 AMF 相互作用受损的拟南芥(Nicotiana attenuata)植物与空载体(EV)植物进行了竞争性生长,同时使用和不使用两种不同类型的接种物。接种时,EV 植物的表现明显优于 irCCaMK 植物。叶片转录谱分析显示,AMF 定植显著改变了 irCCaMK 植物中 P-饥饿和 -转运蛋白基因的表达。Pht1 家族磷酸盐转运蛋白 NaPT5 不仅在 AMF 定植后在根部特异性诱导,而且在 AMF 定植的 irCCaMK 植物的叶片中诱导,并且在没有 AMF 的低 Pi 条件下生长的植物中诱导。接种 irCCaMK 植物的 P-饥饿特征与叶片中选定氨基酸和酚类化合物的增加相对应。我们还发现根中 AMF 诱导的氨基酸和酚类代谢物强烈增加。当与具有完整功能的同基因系竞争有限的土壤养分时,与 AMF 相互作用受损的植物显然处于不利的适应地位。在 P-饥饿条件下,AMF 诱导的 Pht1 家族转运蛋白 NaPT5 在叶片中的额外作用需要进一步的实验来完全解决。