Suppr超能文献

高效的基因敲入在蝾螈中的应用及其在测试卫星细胞在肢体再生中的作用。

Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration.

机构信息

Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany;

Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria.

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12501-12506. doi: 10.1073/pnas.1706855114. Epub 2017 Oct 31.

Abstract

Salamanders exhibit extensive regenerative capacities and serve as a unique model in regeneration research. However, due to the lack of targeted gene knockin approaches, it has been difficult to label and manipulate some of the cell populations that are crucial for understanding the mechanisms underlying regeneration. Here we have established highly efficient gene knockin approaches in the axolotl () based on the CRISPR/Cas9 technology. Using a homology-independent method, we successfully inserted both the reporter gene and a larger membrane-tagged (∼5-kb) cassette into axolotl and genomic loci. Depending on the size of the DNA fragments for integration, 5-15% of the F0 transgenic axolotl are positive for the transgene. Using these techniques, we have labeled and traced the PAX7-positive satellite cells as a major source contributing to myogenesis during axolotl limb regeneration. Our work brings a key genetic tool to molecular and cellular studies of axolotl regeneration.

摘要

蝾螈表现出广泛的再生能力,是再生研究中的独特模型。然而,由于缺乏靶向基因敲入方法,标记和操作对于理解再生机制至关重要的一些细胞群体变得困难。在这里,我们基于 CRISPR/Cas9 技术在蝾螈中建立了高效的基因敲入方法。我们使用一种不依赖同源性的方法,成功地将报告基因和一个更大的膜标记的(约 5kb)盒插入蝾螈和基因组位点。根据整合的 DNA 片段的大小,5-15%的 F0 转基因蝾螈的转基因呈阳性。使用这些技术,我们已经标记和追踪了 PAX7 阳性卫星细胞,它们是蝾螈肢体再生中肌肉发生的主要来源。我们的工作为蝾螈再生的分子和细胞研究带来了关键的遗传工具。

相似文献

1
Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12501-12506. doi: 10.1073/pnas.1706855114. Epub 2017 Oct 31.
2
Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum).
Nat Protoc. 2018 Dec;13(12):2908-2943. doi: 10.1038/s41596-018-0071-0.
4
Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species.
Cell Stem Cell. 2014 Feb 6;14(2):174-87. doi: 10.1016/j.stem.2013.11.007. Epub 2013 Nov 21.
5
Visualization of PAX7 protein dynamics in muscle satellite cells in a YFP knock-in-mouse line.
Skelet Muscle. 2018 Aug 24;8(1):26. doi: 10.1186/s13395-018-0174-x.
6
Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration.
Nat Commun. 2017 Dec 22;8(1):2286. doi: 10.1038/s41467-017-01964-9.
7
Applying a Knock-In Strategy to Create Reporter-Tagged Knockout Alleles in Axolotls.
Methods Mol Biol. 2023;2562:351-368. doi: 10.1007/978-1-0716-2659-7_23.
8
The axolotl genome and the evolution of key tissue formation regulators.
Nature. 2018 Feb 1;554(7690):50-55. doi: 10.1038/nature25458. Epub 2018 Jan 24.
10
PRMT7 Preserves Satellite Cell Regenerative Capacity.
Cell Rep. 2016 Feb 16;14(6):1528-1539. doi: 10.1016/j.celrep.2016.01.022. Epub 2016 Feb 4.

引用本文的文献

1
Optimized toolkit for the manipulation of immortalized axolotl fibroblasts.
Methods. 2025 Aug;240:21-34. doi: 10.1016/j.ymeth.2025.03.019. Epub 2025 Apr 3.
2
Revealing the biological features of the axolotl pancreas as a new research model.
Front Cell Dev Biol. 2025 Jan 31;13:1531903. doi: 10.3389/fcell.2025.1531903. eCollection 2025.
3
Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart.
Dev Biol. 2024 Mar;507:44-63. doi: 10.1016/j.ydbio.2023.12.008. Epub 2023 Dec 24.
5
The salamander blastema within the broader context of metazoan regeneration.
Front Cell Dev Biol. 2023 Aug 11;11:1206157. doi: 10.3389/fcell.2023.1206157. eCollection 2023.
6
Limb blastema formation: How much do we know at a genetic and epigenetic level?
J Biol Chem. 2023 Feb;299(2):102858. doi: 10.1016/j.jbc.2022.102858. Epub 2022 Dec 31.
7
Muscles are barely required for the patterning and cell dynamics in axolotl limb regeneration.
Front Genet. 2022 Oct 10;13:1036641. doi: 10.3389/fgene.2022.1036641. eCollection 2022.
8
Now that We Got There, What Next?
Methods Mol Biol. 2023;2562:471-479. doi: 10.1007/978-1-0716-2659-7_31.
9
A Practical Guide for CRISPR-Cas9-Induced Mutations in Axolotls.
Methods Mol Biol. 2023;2562:335-349. doi: 10.1007/978-1-0716-2659-7_22.
10
Hybridization Chain Reaction Fluorescence In Situ Hybridization (HCR-FISH) in Ambystoma mexicanum Tissue.
Methods Mol Biol. 2023;2562:109-122. doi: 10.1007/978-1-0716-2659-7_6.

本文引用的文献

3
Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
Development. 2016 Jun 1;143(11):2025-37. doi: 10.1242/dev.134809. Epub 2016 Apr 29.
4
Precise Editing of the Zebrafish Genome Made Simple and Efficient.
Dev Cell. 2016 Mar 21;36(6):654-67. doi: 10.1016/j.devcel.2016.02.015.
5
Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
Nucleic Acids Res. 2016 May 19;44(9):e85. doi: 10.1093/nar/gkw064. Epub 2016 Feb 4.
7
Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis.
FASEB J. 2015 Dec;29(12):4914-23. doi: 10.1096/fj.15-273425. Epub 2015 Aug 12.
8
Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10437-42. doi: 10.1073/pnas.1512503112. Epub 2015 Jul 27.
9
High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes.
Genetics. 2015 Sep;201(1):47-54. doi: 10.1534/genetics.115.179382. Epub 2015 Jul 17.
10
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection.
J Biotechnol. 2015 Aug 20;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024. Epub 2015 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验