Suppr超能文献

运用再描述挖掘来关联认知障碍和阿尔茨海默病患者的临床与生物学特征。

Using redescription mining to relate clinical and biological characteristics of cognitively impaired and Alzheimer's disease patients.

作者信息

Mihelčić Matej, Šimić Goran, Babić Leko Mirjana, Lavrač Nada, Džeroski Sašo, Šmuc Tomislav

机构信息

Division of Electronics, Ruđer Bošković Institute, Zagreb, Croatia.

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.

出版信息

PLoS One. 2017 Oct 31;12(10):e0187364. doi: 10.1371/journal.pone.0187364. eCollection 2017.

Abstract

Based on a set of subjects and a collection of attributes obtained from the Alzheimer's Disease Neuroimaging Initiative database, we used redescription mining to find interpretable rules revealing associations between those determinants that provide insights about the Alzheimer's disease (AD). We extended the CLUS-RM redescription mining algorithm to a constraint-based redescription mining (CBRM) setting, which enables several modes of targeted exploration of specific, user-constrained associations. Redescription mining enabled finding specific constructs of clinical and biological attributes that describe many groups of subjects of different size, homogeneity and levels of cognitive impairment. We confirmed some previously known findings. However, in some instances, as with the attributes: testosterone, ciliary neurotrophic factor, brain natriuretic peptide, Fas ligand, the imaging attribute Spatial Pattern of Abnormalities for Recognition of Early AD, as well as the levels of leptin and angiopoietin-2 in plasma, we corroborated previously debatable findings or provided additional information about these variables and their association with AD pathogenesis. Moreover, applying redescription mining on ADNI data resulted with the discovery of one largely unknown attribute: the Pregnancy-Associated Protein-A (PAPP-A), which we found highly associated with cognitive impairment in AD. Statistically significant correlations (p ≤ 0.01) were found between PAPP-A and clinical tests: Alzheimer's Disease Assessment Scale, Clinical Dementia Rating Sum of Boxes, Mini Mental State Examination, etc. The high importance of this finding lies in the fact that PAPP-A is a metalloproteinase, known to cleave insulin-like growth factor binding proteins. Since it also shares similar substrates with A Disintegrin and the Metalloproteinase family of enzymes that act as α-secretase to physiologically cleave amyloid precursor protein (APP) in the non-amyloidogenic pathway, it could be directly involved in the metabolism of APP very early during the disease course. Therefore, further studies should investigate the role of PAPP-A in the development of AD more thoroughly.

摘要

基于从阿尔茨海默病神经影像倡议数据库中获取的一组受试者和一系列属性,我们使用重描述挖掘来寻找可解释的规则,以揭示那些能为阿尔茨海默病(AD)提供见解的决定因素之间的关联。我们将CLUS-RM重描述挖掘算法扩展到基于约束的重描述挖掘(CBRM)设置,这使得能够以多种模式对特定的、用户约束的关联进行有针对性的探索。重描述挖掘能够找到临床和生物学属性的特定结构,这些结构描述了许多不同规模、同质性和认知障碍水平的受试者群体。我们证实了一些先前已知的发现。然而,在某些情况下,如属性:睾酮、睫状神经营养因子、脑钠肽、Fas配体、用于识别早期AD的成像属性异常空间模式,以及血浆中瘦素和血管生成素-2的水平,我们证实了先前有争议的发现,或提供了关于这些变量及其与AD发病机制关联的额外信息。此外,对ADNI数据应用重描述挖掘发现了一个很大程度上未知的属性:妊娠相关蛋白A(PAPP-A),我们发现它与AD中的认知障碍高度相关。在PAPP-A与临床测试:阿尔茨海默病评估量表、临床痴呆评定量表总分、简易精神状态检查表等之间发现了具有统计学意义的相关性(p≤0.01)。这一发现的高度重要性在于,PAPP-A是一种金属蛋白酶,已知其能切割胰岛素样生长因子结合蛋白。由于它还与作为α-分泌酶在非淀粉样生成途径中生理切割淀粉样前体蛋白(APP)的解整合素和金属蛋白酶家族的酶共享相似的底物,它可能在疾病过程的早期就直接参与APP的代谢。因此,进一步的研究应更深入地探究PAPP-A在AD发展中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c44/5663625/795c096ebe3e/pone.0187364.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验