Suppr超能文献

线粒体疾病中AMPK介导的代谢重编程的僵化现象。

Inflexibility of AMPK-mediated metabolic reprogramming in mitochondrial disease.

作者信息

Lin Dar-Shong, Kao Shu-Huei, Ho Che-Sheng, Wei Yau-Huei, Hung Pi-Lien, Hsu Mei-Hsin, Wu Tsu-Yen, Wang Tuan-Jen, Jian Yuan-Ren, Lee Tsung-Han, Chiang Ming-Fu

机构信息

Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.

Department of Medicine, Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan.

出版信息

Oncotarget. 2017 Sep 1;8(43):73627-73639. doi: 10.18632/oncotarget.20617. eCollection 2017 Sep 26.

Abstract

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is most commonly caused by the A3243G mutation of mitochondrial DNA. The capacity to utilize fatty acid or glucose as a fuel source and how such dynamic switches of metabolic fuel preferences and transcriptional modulation of adaptive mechanism in response to energy deficiency in MELAS syndrome have not been fully elucidated. The fibroblasts from patients with MELAS syndrome demonstrated a remarkable deficiency of electron transport chain complexes I and IV, an impaired cellular biogenesis under glucose deprivation, and a decreased ATP synthesis. In situ analysis of the bioenergetic properties of MELAS cells demonstrated an attenuated fatty acid oxidation that concomitantly occurred with impaired mitochondrial respiration, while energy production was mostly dependent on glycolysis. Furthermore, the transcriptional modulation was mediated by the AMP-activated protein kinase (AMPK) signaling pathway, which activated its downstream modulators leading to a subsequent increase in glycolytic flux through activation of pyruvate dehydrogenase. In contrast, the activities of carnitine palmitoyltransferase for fatty acid oxidation and acetyl-CoA carboxylase-1 for fatty acid synthesis were reduced and transcriptional regulation factors for biogenesis were not altered. These results provide novel information that MELAS cells lack the adaptive mechanism to switch fuel source from glucose to fatty acid, as glycolysis rates increase in response to energy deficiency. The aberrant secondary cellular responses to disrupted metabolic homeostasis mediated by AMPK signaling pathway may contribute to the development of the clinical phenotype.

摘要

线粒体脑肌病伴乳酸酸中毒和卒中样发作(MELAS)综合征最常见的病因是线粒体DNA的A3243G突变。关于MELAS综合征中利用脂肪酸或葡萄糖作为燃料来源的能力,以及代谢燃料偏好的这种动态转换和响应能量缺乏时适应性机制的转录调控,尚未完全阐明。MELAS综合征患者的成纤维细胞显示出电子传递链复合物I和IV明显缺乏,在葡萄糖剥夺情况下细胞生物合成受损,以及ATP合成减少。对MELAS细胞生物能量特性的原位分析表明,脂肪酸氧化减弱,同时线粒体呼吸受损,而能量产生主要依赖糖酵解。此外,转录调控由AMP激活的蛋白激酶(AMPK)信号通路介导,该通路激活其下游调节因子,导致随后通过激活丙酮酸脱氢酶增加糖酵解通量。相反,脂肪酸氧化的肉碱棕榈酰转移酶和脂肪酸合成的乙酰辅酶A羧化酶-1的活性降低,生物合成的转录调控因子未改变。这些结果提供了新的信息,即MELAS细胞缺乏将燃料来源从葡萄糖转换为脂肪酸的适应性机制,因为糖酵解速率会随着能量缺乏而增加。由AMPK信号通路介导的对代谢稳态破坏的异常继发性细胞反应可能有助于临床表型的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f21/5650287/ed9d121dc5b3/oncotarget-08-73627-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验