Suppr超能文献

多能细胞中线粒体 DNA 疾病患者的代谢挽救。

Metabolic rescue in pluripotent cells from patients with mtDNA disease.

机构信息

1] Center for Embryonic Cell and Gene Therapy, Oregon Health &Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive &Developmental Sciences, Oregon National Primate Research Center, Oregon Health &Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA.

Center for Regenerative Medicine and Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA.

出版信息

Nature. 2015 Aug 13;524(7564):234-8. doi: 10.1038/nature14546. Epub 2015 Jul 15.

Abstract

Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.

摘要

线粒体在氧化磷酸化过程中产生能量方面起着重要作用,而氧化磷酸化依赖于线粒体 (mt)DNA 编码的关键基因的表达。mtDNA 突变可导致致命或严重的致残疾病,且治疗选择有限。临床表现基于突变类型和异质性(即每个细胞中突变型和野生型 mtDNA 的相对水平)而有所不同。在这里,我们从 mtDNA 疾病患者中生成了经过基因校正的多能干细胞 (PSC)。从患有常见异质性突变的患者中衍生出了多个诱导多能干细胞 (iPS) 细胞系,包括引起线粒体脑肌病伴高乳酸血症和卒中样发作 (MELAS) 的 3243A>G 突变,以及与 Leigh 综合征相关的 8993T>G 和 13513G>A 突变。通过增殖成纤维细胞中异质性 mtDNA 的自发分离,生成了纯合 MELAS 和 Leigh 综合征 iPS 细胞系,其中仅包含野生型或突变型 mtDNA。此外,体细胞核移植 (SCNT) 可将同源性 8993T>G 成纤维细胞中的突变型 mtDNA 替换,从而生成校正的 Leigh-NT1 PSC。尽管 Leigh-NT1 PSC 含有供体卵母细胞的野生型 mtDNA(人类单体型 D4a),与 Leigh 综合征患者单体型 (F1a) 在总共 47 个核苷酸位点上不同,但 Leigh-NT1 细胞显示出与携带野生型 mtDNA 的胚胎衍生 PSC 相似的转录组谱,表明正常的核-线粒体相互作用。此外,与突变细胞中观察到的受损氧消耗和 ATP 生成相比,经基因修复的患者 PSC 表现出正常的代谢功能。我们得出结论,两种重编程方法均提供了互补策略,可通过单个 iPS 细胞系中异质性 mtDNA 的自发分离或 SCNT 在同源性 mtDNA 疾病中进行线粒体替换,来获得仅包含野生型 mtDNA 的 PSC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验