Department of Mechanical Engineering, University of Maryland, College Park, MD, USA.
Lab Chip. 2017 Nov 21;17(23):4105-4112. doi: 10.1039/c7lc00846e.
A sample digitization method that exploits the controlled pinning of fluid at geometric discontinuities within an array of staggered microfluidic traps is presented. The staggered trap design enables reliable sample filling within high aspect ratio microwells, even when employing substrate materials such as thermoplastics that are not gas permeable. A simple geometric model is developed to predict the impact of device geometry on sample filling and discretization, and validated experimentally using fabricated cyclic olefin polymer devices. Using the developed design guidelines, a 768-element staggered trap array is demonstrated, with reliable passive loading and discretization achieved within 5 min. The resulting discretization platform offers a simplified workflow with flexible trap design, reliable discretization, and repeatable operation using low-cost thermoplastic substrates.
提出了一种利用微流控陷阱阵列中几何不连续处的受控固定化来实现样品数字化的方法。交错式微阱设计可实现高纵横比微井中的可靠样品填充,即使使用不透气的热塑性塑料等基底材料也是如此。开发了一个简单的几何模型来预测器件几何形状对样品填充和离散化的影响,并使用制造的环烯烃聚合物器件进行了实验验证。利用所开发的设计准则,展示了一个 768 单元交错式微阱阵列,在 5 分钟内实现了可靠的被动加载和离散化。所得的离散化平台提供了简化的工作流程,具有灵活的微阱设计、可靠的离散化以及使用低成本热塑性基底的可重复操作。