Wang Shujun, Clapper Ashleigh, Chen Peng, Wang Lianzhou, Aharonovich Igor, Jin Dayong, Li Qin
Queensland Miro- and Nanotechnology Centre, Griffith University , Nathan, Queensland 4111, Australia.
School of Engineering (Environmental), Griffith University , Nathan, Queensland 4111, Australia.
J Phys Chem Lett. 2017 Nov 16;8(22):5673-5679. doi: 10.1021/acs.jpclett.7b02550. Epub 2017 Nov 8.
Graphene quantum dots (GQDs) are emerging luminescent nanomaterials for energy, bioimaging, and optoelectronic applications. However, unlike conventional fluorophores, GQDs contain multiple emissive centers that result in a complex interaction with external electromagnetic fields. Here we utilize core-shell plasmonic nanoparticles to simultaneously enhance and modulate the photoluminescence (PL) intensities and spectral profiles of GQDs. By analyzing the spectral profiles, we show that the emissive centers are highly influenced by the proximity to the metal particles. Under optimal spacer thickness of 25 nm, the overall PL displays a four-fold enhancement compared with a pristine GQD. However, detailed lifetime measurements indicate the presence of midgap states that act as the bottleneck for further enhancement. Our results offer new perspectives for fundamental understanding and new design of functional luminescent materials (e.g., GQDs, graphene oxide, carbon dots) for imaging, sensing, and light harvesting.
石墨烯量子点(GQDs)是用于能源、生物成像和光电子应用的新兴发光纳米材料。然而,与传统荧光团不同,GQDs包含多个发射中心,这导致其与外部电磁场发生复杂的相互作用。在此,我们利用核壳等离子体纳米颗粒同时增强和调节GQDs的光致发光(PL)强度和光谱轮廓。通过分析光谱轮廓,我们表明发射中心受到与金属颗粒距离的高度影响。在25nm的最佳间隔层厚度下,与原始GQD相比,整体PL显示出四倍的增强。然而,详细的寿命测量表明存在带隙中间态,这些态成为进一步增强的瓶颈。我们的结果为深入理解功能性发光材料(如GQDs、氧化石墨烯、碳点)以及用于成像、传感和光捕获的新设计提供了新的视角。