From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.
the Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic.
J Biol Chem. 2017 Dec 22;292(51):20921-20935. doi: 10.1074/jbc.M117.817023. Epub 2017 Nov 1.
The heme-based oxygen sensor histidine kinase GcHK is part of a two-component signal transduction system in bacteria. O binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH and -CN complexes of GcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length GcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of GcHK. We conclude that GcHK functions as an ensemble of molecules sampling at least two conformational states.
基于血红素的氧传感器组氨酸激酶 GcHK 是细菌中二组分信号转导系统的一部分。O 结合其 N 端球蛋白结构域中的 Fe(II) 血红素复合物强烈刺激其 C 端激酶结构域中 His 的自磷酸化。GcHK 的六配位血红素 Fe(III)-OH 和 -CN 配合物也是活性的,但五配位血红素 Fe(II)配合物和无血红素的脱辅基形式是无活性的。在这里,我们测定了活性 Fe(III)-CN 和无活性五配位 Fe(II)形式的分离二聚球蛋白结构域的晶体结构,揭示了球蛋白结构域血红素近端侧的惊人结构差异。使用氢/氘交换与质谱联用技术来表征溶液中全长 GcHK 的活性和无活性形式的构象,我们研究了分子内信号转导机制。在球蛋白结构域的血红素近端侧(H5 螺旋)、二聚化界面(H6 和 H7 螺旋和 L7 环)以及激酶结构域的 ATP 结合位点(H9 和 H11 螺旋)观察到活性和无活性形式之间的主要差异。此外,传感器和激酶结构域的分离(使催化失活)增加了球蛋白结构域二聚化界面(H6 螺旋)以及 H11 螺旋的柔韧性和溶剂暴露。总之,这些结果表明,血红素近端侧、球蛋白结构域二聚化界面和 ATP 结合位点的结构变化在 GcHK 的信号转导机制中很重要。我们得出结论,GcHK 作为至少两种构象状态的分子集合体发挥作用。