Suppr超能文献

π-螺旋控制氧感应二鸟苷酸环化酶的活性。

π-Helix controls activity of oxygen-sensing diguanylate cyclases.

机构信息

Department of Chemistry, Emory University, 1515 Dickey Dr. NE, Atlanta, GA 30322, U.S.A.

Department of Biochemistry and Molecular Biology, Pennsylvania State University, 306 Althouse Laboratory, University Park, PA 16802, U.S.A.

出版信息

Biosci Rep. 2020 Feb 28;40(2). doi: 10.1042/BSR20193602.

Abstract

The ability of organisms to sense and adapt to oxygen levels in their environment leads to changes in cellular phenotypes, including biofilm formation and virulence. Globin coupled sensors (GCSs) are a family of heme proteins that regulate diverse functions in response to O2 levels, including modulating synthesis of cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates biofilm formation. While GCS proteins have been demonstrated to regulate O2-dependent pathways, the mechanism by which the O2 binding event is transmitted from the globin domain to the cyclase domain is unknown. Using chemical cross-linking and subsequent liquid chromatography-tandem mass spectrometry, diguanylate cyclase (DGC)-containing GCS proteins from Bordetella pertussis (BpeGReg) and Pectobacterium carotovorum (PccGCS) have been demonstrated to form direct interactions between the globin domain and a middle domain π-helix. Additionally, mutation of the π-helix caused major changes in oligomerization and loss of DGC activity. Furthermore, results from assays with isolated globin and DGC domains found that DGC activity is affected by the cognate globin domain, indicating unique interactions between output domain and cognate globin sensor. Based on these studies a compact GCS structure, which depends on the middle domain π-helix for orienting the three domains, is needed for DGC activity and allows for direct sensor domain interactions with both middle and output domains to transmit the O2 binding signal. The insights from the present study improve our understanding of DGC regulation and provide insight into GCS signaling that may lead to the ability to rationally control O2-dependent GCS activity.

摘要

生物体感知和适应环境中氧气水平的能力导致细胞表型发生变化,包括生物膜形成和毒力。球蛋白偶联传感器(GCS)是一类血红素蛋白家族,可响应 O2 水平调节多种功能,包括调节环二鸟苷酸(c-di-GMP)的合成,c-di-GMP 是一种调节生物膜形成的细菌第二信使。虽然已经证明 GCS 蛋白调节 O2 依赖性途径,但 O2 结合事件从球蛋白结构域传递到环化酶结构域的机制尚不清楚。使用化学交联和随后的液相色谱-串联质谱法,已证明百日咳博德特氏菌(BpeGReg)和果胶杆菌(PccGCS)中的含二鸟苷酸环化酶(DGC)GCS 蛋白在球蛋白结构域和中间结构域π-螺旋之间形成直接相互作用。此外,π-螺旋的突变导致聚合的重大变化和 DGC 活性丧失。此外,使用分离的球蛋白和 DGC 结构域进行的测定结果表明,DGC 活性受同源球蛋白结构域影响,表明输出结构域和同源球蛋白传感器之间存在独特的相互作用。基于这些研究,一个紧凑的 GCS 结构,其依赖于中间结构域π-螺旋来定向三个结构域,对于 DGC 活性是必需的,并允许传感器结构域与中间和输出结构域直接相互作用,以传递 O2 结合信号。本研究的见解提高了我们对 DGC 调节的理解,并深入了解 GCS 信号传导,这可能导致能够合理控制 O2 依赖性 GCS 活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/948d/7033309/a7ad6a12cd30/bsr-40-bsr20193602-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验