Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
J Virol. 2018 Jan 2;92(2):e01725-17. doi: 10.1128/JVI.01725-17.
All viruses must successfully harness the host translational apparatus and divert it towards viral protein synthesis. Dicistroviruses use an unusual internal ribosome entry site (IRES) mechanism whereby the IRES adopts a three-pseudoknot structure that accesses the ribosome tRNA binding sites to directly recruit the ribosome and initiate translation from a non-AUG start site. A subset of dicistroviruses, including the honey bee (IAPV), encode an extra stem-loop (SLVI) 5' -adjacent to the IGR IRES. Previously, the function of this additional stem-loop is unknown. Here, we provide mechanistic and functional insights into the role of SLVI in IGR IRES translation and in virus infection. Biochemical analyses of a series of mutant IRESs demonstrated that SLVI does not function in ribosome recruitment but is required for proper ribosome positioning on the IRES to direct translation. Using a chimeric infectious clone derived from the related , we showed that the integrity of SLVI is important for optimal viral translation and viral yield. Based on structural models of ribosome-IGR IRES complexes, the SLVI is predicted to be in the vicinity of the ribosome E site. We propose that SLVI of IAPV IGR IRES functionally mimics interactions of an E-site tRNA with the ribosome to direct positioning of the tRNA-like domain of the IRES in the A site.Viral internal ribosome entry sites are RNA elements and structures that allow some positive-sense monopartite RNA viruses to hijack the host ribosome to start viral protein synthesis. We demonstrate that a unique stem-loop structure is essential for optimal viral protein synthesis and for virus infection. Biochemical evidence shows that this viral stem-loop RNA structure impacts a fundamental property of the ribosome to start protein synthesis.
所有病毒都必须成功利用宿主翻译装置,并将其转向病毒蛋白合成。双顺反子病毒使用一种不寻常的内部核糖体进入位点(IRES)机制,其中 IRES 采用三假结结构,可访问核糖体 tRNA 结合位点,直接招募核糖体,并从非 AUG 起始位点起始翻译。包括蜜蜂(IAPV)在内的一部分双顺反子病毒,在 IGR IRES 旁编码一个额外的茎环(SLVI)5'。以前,这个额外茎环的功能未知。在这里,我们提供了关于 SLVI 在 IGR IRES 翻译和病毒感染中的作用的机制和功能见解。一系列突变 IRES 的生化分析表明,SLVI 不在核糖体招募中起作用,但需要在 IRES 上正确定位核糖体以指导翻译。使用源自相关病毒的嵌合感染性克隆,我们表明 SLVI 的完整性对于最佳病毒翻译和病毒产量很重要。基于核糖体-IGR IRES 复合物的结构模型,预测 SLVI 位于核糖体 E 位附近。我们提出,IAPV IGR IRES 的 SLVI 功能上模拟了 E 位 tRNA 与核糖体的相互作用,以指导 IRES 的 tRNA 样结构域在 A 位的定位。病毒内部核糖体进入位点是 RNA 元件和结构,允许一些正单链 RNA 病毒劫持宿主核糖体以开始病毒蛋白合成。我们证明了一个独特的茎环结构对于最佳病毒蛋白合成和病毒感染是必不可少的。生化证据表明,这种病毒茎环 RNA 结构影响了核糖体起始蛋白合成的基本性质。