Suppr超能文献

原子力显微镜和纳米压痕法研究各种溅射薄膜形貌的聚二甲基硅氧烷弹性基底顺应性。

Atomic force microscopy and nanoindentation investigation of polydimethylsiloxane elastomeric substrate compliancy for various sputtered thin film morphologies.

机构信息

Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), VIT University, Vellore, Tamil Nadu, 632014, India.

School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.

出版信息

J Biomed Mater Res A. 2018 Mar;106(3):725-737. doi: 10.1002/jbm.a.36283. Epub 2017 Nov 16.

Abstract

Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018.

摘要

在软弹性基底上形成无裂纹的电连续金属薄膜对于实现现代柔性生物电子学和生物传感器至关重要。在非优化的沉积条件下,顶层薄膜和底层软基底的分层和/或开裂会阻碍这些器件的最佳性能。因此,了解和控制不仅各种沉积因素(如功率、时间或沉积压力),而且研究在确保薄膜附着力和基底顺应性方面起着关键作用的各种界面物理现象非常重要。在本研究中,研究了底层基底的各种纳米力学信息,即无裂纹和裂纹的聚二甲基硅氧烷 (PDMS) 表面的裂纹轮廓、平均粗糙度、杨氏模量和粘附力,以及原始和常规等离子体处理的 PDMS 样品作为对照。使用三维表面轮廓仪、扫描电子显微镜、纳米压痕和原子力显微镜技术对上述参数进行了量化,以阐明模量范围、平均粗糙度和粘附力。与对照的比较分析表明,增加的模量值、增加的表面粗糙度和降低的粘附力之间存在显著的相似性,这归因于基底顺应性降低,导致薄膜开裂或翘曲,这对于各种生物柔性器件的发展至关重要。 © 2017 威利父子公司。生物医学材料研究杂志 A 部分:106A:725-737,2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验