Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt Pleasant, Michigan 48859, USA.
Institute of Theoretical Physics, TU Bergakademie Freiberg, 09596 Freiberg, Germany.
J Chem Phys. 2017 Oct 28;147(16):164107. doi: 10.1063/1.4996498.
In the Fermi-Löwdin orbital method for implementing self-interaction corrections (FLO-SIC) in density functional theory (DFT), the local orbitals used to make the corrections are generated in a unitary-invariant scheme via the choice of the Fermi orbital descriptors (FODs). These are M positions in 3-d space (for an M-electron system) that can be loosely thought of as classical electron positions. The orbitals that minimize the DFT energy including the SIC are obtained by finding optimal positions for the FODs. In this paper, we present optimized FODs for the atoms from Li-Kr obtained using an unbiased search method and self-consistent FLO-SIC calculations. The FOD arrangements display a clear shell structure that reflects the principal quantum numbers of the orbitals. We describe trends in the FOD arrangements as a function of atomic number. FLO-SIC total energies for the atoms are presented and are shown to be in close agreement with the results of previous SIC calculations that imposed explicit constraints to determine the optimal local orbitals, suggesting that FLO-SIC yields the same solutions for atoms as these computationally demanding earlier methods, without invoking the constraints.
在密度泛函理论(DFT)中实现自相互作用校正(SIC)的费米-洛温丁轨道方法(FLO-SIC)中,用于进行校正的局域轨道是通过选择费米轨道描述符(FOD)以幺正不变的方式生成的。这些是 3 维空间中的 M 个位置(对于 M 电子系统),可以粗略地认为是经典电子位置。通过为 FOD 找到最佳位置,可以获得包括 SIC 在内的 DFT 能量最小化的轨道。在本文中,我们使用无偏搜索方法和自洽 FLO-SIC 计算为 Li-Kr 原子得到了优化的 FOD。FOD 排列显示出明显的壳层结构,反映了轨道的主量子数。我们描述了 FOD 排列随原子序数的变化趋势。给出了原子的 FLO-SIC 总能量,并与先前施加显式约束以确定最佳局域轨道的 SIC 计算结果进行了比较,这表明 FLO-SIC 为原子提供了与这些早期计算量大的方法相同的解,而无需调用约束。