Schwalbe Sebastian, Schulze Wanja Timm, Trepte Kai, Lehtola Susi
Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany.
J Chem Theory Comput. 2024 Aug 27;20(16):7144-7154. doi: 10.1021/acs.jctc.4c00694. Epub 2024 Aug 14.
The Perdew-Zunger (PZ) self-interaction correction (SIC) is an established tool to correct unphysical behavior in density functional approximations. Yet, the PZ-SIC is well-known to sometimes break molecular symmetries. An example of this is the benzene molecule, for which the PZ-SIC predicts a symmetry-broken electron density and molecular geometry, since the method does not describe the two possible Kekulé structures on an even footing, leading to local minima [Lehtola et al. 2016, 12, 3195]. The PZ-SIC is often implemented with Fermi-Löwdin orbitals (FLOs), yielding the FLO-SIC method, which likewise has issues with symmetry breaking and local minima [Trepte et al. 2021, 155, 224109]. In this work, we propose a generalization of the PZ-SIC─the ensemble PZ-SIC (E-PZ-SIC) method─which shares the asymptotic computational scaling of the PZ-SIC (albeit with an additional prefactor). The E-PZ-SIC is straightforwardly applicable to various molecules, merely requiring one to average the self-interaction correction over all possible Kekulé structures, in line with chemical intuition. We showcase the implementation of the E-PZ-SIC with FLOs, as the resulting E-FLO-SIC method is easy to realize on top of an existing implementation of the FLO-SIC. We show that the E-FLO-SIC indeed eliminates symmetry breaking, reproducing a symmetric electron density and molecular geometry for benzene. The ensemble approach suggested herein could also be employed within approximate or locally scaled variants of the PZ-SIC and its FLO-SIC versions.
佩德韦-曾格(PZ)自相互作用校正(SIC)是一种用于校正密度泛函近似中非物理行为的既定工具。然而,众所周知,PZ-SIC有时会破坏分子对称性。苯分子就是一个例子,对于苯分子,PZ-SIC预测其电子密度和分子几何结构会出现对称性破缺,因为该方法没有平等地描述两种可能的凯库勒结构,从而导致局部极小值[莱托拉等人,2016年,12卷,3195页]。PZ-SIC通常用费米-洛丁轨道(FLO)来实现,从而产生FLO-SIC方法,该方法同样存在对称性破缺和局部极小值的问题[特雷普特等人,2021年,155卷,224109页]。在这项工作中,我们提出了PZ-SIC的一种推广——系综PZ-SIC(E-PZ-SIC)方法——它与PZ-SIC具有相同的渐近计算标度(尽管有一个额外的系数)。E-PZ-SIC可直接应用于各种分子,只需根据化学直觉对所有可能的凯库勒结构的自相互作用校正进行平均即可。我们展示了用FLO实现E-PZ-SIC的过程,因为由此产生的E-FLO-SIC方法很容易在现有的FLO-SIC实现之上实现。我们表明,E-FLO-SIC确实消除了对称性破缺,再现了苯的对称电子密度和分子几何结构。本文提出的系综方法也可用于PZ-SIC及其FLO-SIC版本的近似或局部缩放变体中。