Bonneaud Nathalie, Layalle Sophie, Colomb Sophie, Jourdan Christophe, Ghysen Alain, Severac Dany, Dantec Christelle, Nègre Nicolas, Maschat Florence
MMDN, Univ. Montpellier, EPHE, INSERM, U1198, Montpellier, F-34095 France; CNRS,UPR1142, Institut de Génétique Humaine, Montpellier, F-34094, France.
CNRS,UPR1142, Institut de Génétique Humaine, Montpellier, F-34094, France; CNRS - INSERM - Université de Montpellier, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France.
Dev Biol. 2017 Dec 15;432(2):273-285. doi: 10.1016/j.ydbio.2017.10.018. Epub 2017 Oct 31.
One way to better understand the molecular mechanisms involved in the construction of a nervous system is to identify the downstream effectors of major regulatory proteins. We previously showed that Engrailed (EN) and Gooseberry-Neuro (GsbN) transcription factors act in partnership to drive the formation of posterior commissures in the central nervous system of Drosophila. In this report, we identified genes regulated by both EN and GsbN through chromatin immunoprecipitation ("ChIP on chip") and transcriptome experiments, combined to a genetic screen relied to the gene dose titration method. The genomic-scale approaches allowed us to define 175 potential targets of EN-GsbN regulation. We chose a subset of these genes to examine ventral nerve cord (VNC) defects and found that half of the mutated targets show clear VNC phenotypes when doubly heterozygous with en or gsbn mutations, or when homozygous. This strategy revealed new groups of genes never described for their implication in the construction of the nerve cord. Their identification suggests that, to construct the nerve cord, EN-GsbN may act at three levels, in: (i) sequential control of the attractive-repulsive signaling that ensures contralateral projection of the commissural axons, (ii) temporal control of the translation of some mRNAs, (iii) regulation of the capability of glial cells to act as commissural guideposts for developing axons. These results illustrate how an early, coordinated transcriptional control may orchestrate the various mechanisms involved in the formation of stereotyped neuronal networks. They also validate the overall strategy to identify genes that play crucial role in axonal pathfinding.
更好地理解参与神经系统构建的分子机制的一种方法是鉴定主要调节蛋白的下游效应器。我们之前表明, engrailed(EN)和gooseberry-neuro(GsbN)转录因子协同作用,驱动果蝇中枢神经系统中后连合的形成。在本报告中,我们通过染色质免疫沉淀(“芯片上的ChIP”)和转录组实验,结合依赖基因剂量滴定法的遗传筛选,鉴定了受EN和GsbN调控的基因。基因组规模的方法使我们能够定义175个EN-GsbN调控的潜在靶点。我们选择了这些基因的一个子集来检查腹侧神经索(VNC)缺陷,发现当与en或gsbn突变双杂合或纯合时,一半的突变靶点显示出明显的VNC表型。这种策略揭示了从未因其在神经索构建中的作用而被描述过的新基因群。它们的鉴定表明,为了构建神经索,EN-GsbN可能在三个层面发挥作用:(i)对吸引-排斥信号的顺序控制,以确保连合轴突的对侧投射;(ii)对某些mRNA翻译的时间控制;(iii)对神经胶质细胞作为发育中轴突的连合路标能力的调节。这些结果说明了早期的、协调的转录控制如何协调参与定型神经元网络形成的各种机制。它们还验证了识别在轴突导向中起关键作用的基因的总体策略。