Suppr超能文献

密歇根神经病变筛查工具的三个问题集可提供心血管结局的独立预后信息:ALTITUDE 试验分析。

Three-question set from Michigan Neuropathy Screening Instrument adds independent prognostic information on cardiovascular outcomes: analysis of ALTITUDE trial.

机构信息

Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.

Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

出版信息

Diabetologia. 2018 Mar;61(3):581-588. doi: 10.1007/s00125-017-4485-y. Epub 2017 Nov 3.

Abstract

AIMS/HYPOTHESIS: The self-administered Michigan Neuropathy Screening Instrument (MNSI) is used to diagnose diabetic peripheral neuropathy. We examined whether the MNSI might also provide information on risk of death and cardiovascular outcomes.

METHODS

In this post hoc analysis of the Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE) trial, we divided 8463 participants with type 2 diabetes and chronic kidney disease (CKD) and/or cardiovascular disease (CVD) into independent training (n = 3252) and validation (n = 5211) sets. In the training set, we identified specific questions that were independently associated with a cardiovascular composite outcome (cardiovascular death, resuscitated cardiac arrest, non-fatal myocardial infarction/stroke, heart failure hospitalisation). We then evaluated the performance of these questions in the validation set.

RESULTS

In the training set, three questions ('Are your legs numb?', 'Have you ever had an open sore on your foot?' and 'Do your legs hurt when you walk?') were significantly associated with the cardiovascular composite outcome. In the validation set, after multivariable adjustment for key covariates, one or more positive responses (n = 3079, 59.1%) was associated with a higher risk of the cardiovascular composite outcome (HR 1.54 [95% CI 1.28, 1.85], p < 0.001), heart failure hospitalisation (HR 1.74 [95% CI 1.29, 2.35], p < 0.001), myocardial infarction (HR 1.81 [95% CI 1.23, 2.69], p = 0.003), stroke (HR 1.75 [95% CI 1.20, 2.56], p = 0.003) and three-point major adverse cardiovascular events (MACE) (cardiovascular death, non-fatal myocardial infarction, non-fatal stroke) (HR 1.49 [95% CI 1.20, 1.85], p < 0.001) relative to no positive responses to all questions. Associations were stronger if participants answered positively to all three questions (n = 552, 11%). The addition of the total number of affirmative responses to existing models significantly improved Harrell's C statistic for the cardiovascular composite outcome (0.70 vs 0.71, p = 0.010), continuous net reclassification improvement (+22% [+10%, +31%], p = 0.027) and integrated discrimination improvement (+0.9% [+0.4%, +2.1%], p = 0.007).

CONCLUSIONS/INTERPRETATION: We identified three questions from the MNSI that provide additional prognostic information for individuals with type 2 diabetes and CKD and/or CVD. If externally validated, these questions may be integrated into the clinical history to augment prediction of CV events in high-risk individuals with type 2 diabetes.

摘要

目的/假设:密歇根州周围神经病变筛查工具(MNSI)用于诊断糖尿病周围神经病变。我们研究了 MNSI 是否也可以提供死亡和心血管结局的风险信息。

方法

在使用心血管和肾脏终点的阿利克仑 2 型糖尿病试验(ALTITUDE)的事后分析中,我们将 8463 名患有 2 型糖尿病和慢性肾脏病(CKD)和/或心血管疾病(CVD)的患者分为独立的训练集(n=3252)和验证集(n=5211)。在训练集中,我们确定了与心血管复合结局(心血管死亡、复苏性心脏骤停、非致命性心肌梗死/中风、心力衰竭住院)独立相关的特定问题。然后,我们在验证集中评估了这些问题的性能。

结果

在训练集中,三个问题(“你的腿麻木吗?”、“你的脚曾经有过开放性溃疡吗?”和“当你走路时,你的腿会疼吗?”)与心血管复合结局显著相关。在验证集中,经过关键协变量的多变量调整后,一个或多个阳性反应(n=3079,59.1%)与心血管复合结局(HR 1.54 [95% CI 1.28, 1.85],p<0.001)、心力衰竭住院(HR 1.74 [95% CI 1.29, 2.35],p<0.001)、心肌梗死(HR 1.81 [95% CI 1.23, 2.69],p=0.003)、中风(HR 1.75 [95% CI 1.20, 2.56],p=0.003)和三个主要不良心血管事件(MACE)(心血管死亡、非致命性心肌梗死、非致命性中风)(HR 1.49 [95% CI 1.20, 1.85],p<0.001)显著相关。如果参与者对所有三个问题都回答阳性,则相关性更强(n=552,11%)。将肯定回答的总数添加到现有模型中,显著提高了心血管复合结局的哈雷尔 C 统计量(0.70 对 0.71,p=0.010)、连续净重新分类改善(+22%[+10%,+31%],p=0.027)和综合判别改善(+0.9%[+0.4%,+2.1%],p=0.007)。

结论/解释:我们从 MNSI 中确定了三个问题,这些问题为患有 2 型糖尿病和 CKD 和/或 CVD 的患者提供了额外的预后信息。如果经过外部验证,这些问题可能会被整合到临床病史中,以增加对 2 型糖尿病高危人群心血管事件的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验