a Section of Hematology/Oncology, Department of Medicine , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA.
b Department of Surgery , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA.
Epigenetics. 2017;12(12):1015-1027. doi: 10.1080/15592294.2017.1391430. Epub 2018 Jan 16.
Accumulating evidence has recently shown that protein methyltransferases and demethylases are crucial regulators in either maintaining pluripotent states or inducing differentiation of embryonic stem cells. These enzymes control pluripotent signatures by mediating activation or repression of histone marks, or through direct methylation of non-histone proteins. Importantly, chromatin modifiers can influence the fate of many differentiation-related genes by loosening chromatin and allowing for transcriptional activation of lineage-specific genes. Genome-wide studies have unraveled diverse changes in methylation patterns following embryonic stem cell differentiation, with redistribution of heterochromatic and euchromatic marks, underlying the importance of chromatin modifiers in governing the fate of embryonic stemness. Furthermore, the development of small molecule inhibitors targeting these agents may shed light in potential clinical implementation to reprogram embryonic stem cells for biomedical therapeutics. Ever since the pioneering introduction of induced pluripotent stem cells, the challenge for application in regenerative medicine and broader medical therapeutics has commenced.
最近有越来越多的证据表明,蛋白质甲基转移酶和去甲基化酶是维持多能状态或诱导胚胎干细胞分化的关键调节因子。这些酶通过介导组蛋白标记的激活或抑制,或通过直接甲基化非组蛋白,来控制多能性特征。重要的是,染色质修饰物可以通过松动染色质并允许谱系特异性基因的转录激活,来影响许多与分化相关的基因的命运。全基因组研究揭示了胚胎干细胞分化后甲基化模式的多样化变化,异染色质和常染色质标记的重新分布,这表明染色质修饰物在控制胚胎干性命运方面的重要性。此外,针对这些药物的小分子抑制剂的开发可能为潜在的临床应用提供启示,即将胚胎干细胞重新编程用于生物医学治疗。自从诱导多能干细胞的开创性引入以来,再生医学和更广泛的医学治疗的应用挑战已经开始。