Suppr超能文献

微生物过程介导稻田土壤中二甲基砷酸盐向甲胂气体的演化。

Microbial Processes Mediating the Evolution of Methylarsine Gases from Dimethylarsenate in Paddy Soils.

机构信息

Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China.

出版信息

Environ Sci Technol. 2017 Nov 21;51(22):13190-13198. doi: 10.1021/acs.est.7b04791. Epub 2017 Nov 10.

Abstract

Arsenic (As) biovolatilization is an important component of the global As biogeochemical cycle. Soils can emit various methylarsine gases, but the underlying microbial processes remain unclear. Here, we show that the addition of molybdate (Mo), an inhibitor of sulfate-reducing bacteria, greatly enhanced dimethylarsine evolution from dimethylarsenate [DMAs(V)] added to two paddy soils. Molybdate addition significantly affected the microbial community structure. The aerobic enrichment cultures from both soils volatilized substantial amounts of dimethylarsine from DMAs(V) in the presence of Mo, whereas the anaerobic enrichment cultures did not. A Bacillus strain (CZ-2) capable of reducing DMAs(V) to dimethylarsine was isolated from the aerobic enrichment culture, and its volatilization ability was enhanced by Mo. RNA-seq analysis identified 10 reductase genes upregulated by Mo. Addition of the reducing agent NADH increased dimethylarsine volatilization by strain CZ-2, suggesting that DMAs(V) reductase is an NADH-dependent enzyme. The strain could not methylate arsenite or convert monomethylarsenate and DMAs(V) to trimethylarsine. Our results show that dimethylarsine evolution from DMAs(V) is independent of the As methylation pathway and that Mo enhances dimethylarsine evolution from paddy soils by shifting the microbial community structure and enhancing the reduction of DMAs(V) to dimethylarsine, possibly through upregulating the expression of DMAs(V) reductase gene(s).

摘要

砷(As)的生物挥发作用是全球 As 地球化学循环的重要组成部分。土壤可以排放各种甲基胂气体,但潜在的微生物过程仍不清楚。在这里,我们表明,钼酸盐(Mo)的添加,一种硫酸盐还原菌的抑制剂,大大增强了二甲砷酸盐[DMAs(V)]添加到两种稻田土壤中二甲基胂的演化。钼酸盐的添加显著影响了微生物群落结构。来自两种土壤的好氧富集培养物在 Mo 的存在下从 DMAs(V)中大量挥发二甲基胂,而厌氧富集培养物则没有。从好氧富集培养物中分离出一种能够将 DMAs(V)还原为二甲基胂的芽孢杆菌(CZ-2)菌株,并且 Mo 增强了其挥发能力。RNA-seq 分析鉴定出 10 个受 Mo 上调的还原酶基因。还原剂 NADH 的添加增加了 CZ-2 菌株的二甲基胂挥发,表明 DMAs(V)还原酶是一种 NADH 依赖性酶。该菌株不能将亚砷酸盐甲基化或将单甲基胂酸盐和 DMAs(V)转化为三甲基胂。我们的结果表明,DMAs(V)中二甲基胂的演化不依赖于 As 甲基化途径,Mo 通过改变微生物群落结构和增强 DMAs(V)向二甲基胂的还原来增强从稻田土壤中二甲基胂的演化,可能是通过上调 DMAs(V)还原酶基因的表达。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验