Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstraße 4, 91058 Erlangen, Germany.
Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Haberstraße 9a, 91058 Erlangen, Germany.
Langmuir. 2017 Nov 28;33(47):13581-13589. doi: 10.1021/acs.langmuir.7b03079. Epub 2017 Nov 15.
We report on the tailoring of ZnO nanoparticle (NP) surfaces by catechol derivatives (CAT) with different functionalities: tert-butyl group (tertCAT), hydrogen (pyroCAT), aromatic ring (naphCAT), ester group (esterCAT), and nitro group (nitroCAT). The influence of electron-donating/-withdrawing properties on enthalpy of ligand binding (ΔH) was resolved and subsequently linked with optical properties. First, as confirmed by ultraviolet/visible (UV/vis) and Fourier transform infrared (FT-IR) spectroscopy results, all CAT molecules chemisorbed to ZnO NPs, independent of the distinct functionality. Interestingly, the ζ-potentials of ZnO after functionalization shifted to more negative values. Then, isothermal titration calorimetry (ITC) and a mass-based method were applied to resolve the heat release during ligand binding and the adsorption isotherm, respectively. However, both heat- and mass-based approaches alone did not fully resolve the binding enthalpy of each molecule adsorbing to the ZnO surface. This is mainly due to the fact that the Langmuir model oversimplifies the underlying adsorption mechanism, at least for some of the tested CAT molecules. Therefore, a new, fitting-free approach was developed to directly access the adsorption enthalpy per molecule during functionalization by dividing the heat release measured via ITC by the amount of bound molecules determined from the adsorption isotherm. Finally, the efficiency of quenching the visible emission caused by ligand binding was investigated by photoluminescence (PL) spectroscopy, which turned out to follow the same trend as the binding enthalpy. Thus, the functionality of ligand molecules governs the binding enthalpy to the particle surface, which in turn, at least in the current case of ZnO, is an important parameter for the quenching of visible emission. We believe that establishing such correlations is an important step toward a more general way of selecting and designing ligand molecules for surface functionalization. This allows developing strategies for tailored colloidal surfaces beyond empirically driven formulation on a case by case basis.
我们报告了通过具有不同功能的儿茶酚衍生物(CAT)对 ZnO 纳米粒子(NP)表面进行剪裁:叔丁基(tertCAT)、氢(pyroCAT)、芳环(naphCAT)、酯基(esterCAT)和硝基(nitroCAT)。电子供体/受体性质对配体结合焓(ΔH)的影响得到了解决,并随后与光学性质相关联。首先,正如紫外/可见(UV/vis)和傅里叶变换红外(FT-IR)光谱结果所证实的,所有 CAT 分子都化学吸附到 ZnO NPs 上,与不同的功能无关。有趣的是,功能化后 ZnO 的 ζ 电位向更负的数值移动。然后,应用等温滴定微量热法(ITC)和基于质量的方法分别解析配体结合过程中的热释放和吸附等温线。然而,仅基于热和质量的方法并不能完全解析每个分子吸附到 ZnO 表面的结合焓。这主要是因为 Langmuir 模型至少对于一些测试的 CAT 分子来说,过于简化了基础的吸附机制。因此,开发了一种新的、无拟合的方法,通过将 ITC 测量的热释放除以从吸附等温线确定的结合分子的量,直接获取功能化过程中每个分子的吸附焓。最后,通过光致发光(PL)光谱研究了配体结合引起的可见发射猝灭的效率,结果表明这与结合焓遵循相同的趋势。因此,配体分子的功能决定了与粒子表面的结合焓,这反过来至少在当前的 ZnO 情况下,是可见发射猝灭的一个重要参数。我们相信,建立这种相关性是朝着更普遍的选择和设计用于表面功能化的配体分子的方法迈出的重要一步。这允许开发针对定制胶体表面的策略,而不仅仅是基于经验的逐案制定配方。