Kocsis Krisztina, Niedermaier Matthias, Kasparek Vít, Bernardi Johannes, Redhammer Günther, Bockstedte Michel, Berger Thomas, Diwald Oliver
Department of Chemistry and Physics of Materials , University of Salzburg , Jakob-Haringer-Strasse 2a , 5020 Salzburg , Austria.
Central European Institute of Technology, Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic.
Langmuir. 2019 Jul 2;35(26):8741-8747. doi: 10.1021/acs.langmuir.9b00656. Epub 2019 Jun 21.
Variations in the composition and structure of ZnO nanoparticle interfaces have a key influence on the materials' optoelectronic properties and are responsible for high number of discrepant results reported for ZnO-based nanomaterials. Here, we conduct a systematic study of the room-temperature photoluminescence of anhydrous ZnO nanocrystals, as synthesized in the gas phase and processed in water-free atmosphere, and of their colloidal derivatives in aqueous dispersions with varying amounts of organic salt admixtures. A free exciton band at hν = 3.3 eV is essentially absent in the anhydrous ZnO nanocrystal powders measured in vacuum or in oxygen atmosphere. Surface hydration of the nanoparticles during colloid formation leads to the emergence of the free exciton band at hν = 3.3 eV and induces a small but significant release in lattice strain as detected by X-ray diffraction. Most importantly, admixture of acetate or citrate ions to the aqueous colloidal dispersions not only allows for the control of the ζ-potential but also affects the intensity of the free exciton emission in a correlated manner. The buildup of negative charge at the solid-liquid interface, as produced by citrate adsorption, increases the free exciton emission. This effect is attributed to the suppression of electron trapping in the near-surface region, which counteracts nonradiative exciton recombination. Using well-defined ZnO nanoparticles as model systems for interface chemistry studies, our findings highlight water-induced key effects that depend on the composition of the aqueous solution shell around the semiconducting metal oxide nanoparticles.
氧化锌纳米颗粒界面的组成和结构变化对材料的光电性能具有关键影响,这也是基于氧化锌的纳米材料报道结果存在大量差异的原因。在此,我们对气相合成并在无水气氛中处理的无水氧化锌纳米晶体及其在含有不同量有机盐混合物的水性分散体中的胶体衍生物进行了室温光致发光的系统研究。在真空或氧气气氛中测量的无水氧化锌纳米晶体粉末中,基本上不存在hν = 3.3 eV的自由激子带。纳米颗粒在胶体形成过程中的表面水合作用导致hν = 3.3 eV的自由激子带出现,并通过X射线衍射检测到晶格应变有小但显著的释放。最重要的是,向水性胶体分散体中添加醋酸根或柠檬酸根离子不仅可以控制ζ电位,还会以相关方式影响自由激子发射的强度。由柠檬酸盐吸附产生的固液界面负电荷的积累增加了自由激子发射。这种效应归因于近表面区域电子俘获的抑制,这抵消了非辐射激子复合。使用定义明确的氧化锌纳米颗粒作为界面化学研究的模型系统,我们的研究结果突出了水诱导的关键效应,这些效应取决于半导体金属氧化物纳米颗粒周围水溶液壳层的组成。