Grupo de Físico-Química Orgânica, Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, s/n°, Bauxita, 35400-000 Ouro Preto, Minas Gerais, Brazil.
Laboratório de Química Tecnológica e Ambiental, Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, s/n°, Bauxita, 35450-000 Ouro Preto, Minas Gerais, Brazil.
J Colloid Interface Sci. 2018 Feb 15;512:575-590. doi: 10.1016/j.jcis.2017.10.083. Epub 2017 Oct 25.
In the third part of this series of studies, the adsorption of the basic textile dyes auramine-O (AO) and safranin-T (ST) on a carboxylated cellulose derivative (CTA) were evaluated in mono- and bi-component spiked aqueous solutions. Adsorption studies were developed as a function of solution pH, contact time, and initial dye concentration. Adsorption kinetic data were modeled by monocomponent kinetic models of pseudo-first- (PFO), pseudo-second-order (PSO), intraparticle diffusion, and Boyd, while the competitive kinetic model of Corsel was used to model bicomponent kinetic data. Monocomponent adsorption equilibrium data were modeled by the Langmuir, Sips, Fowler-Guggenhein, Hill de-Boer, and Konda models, while the IAST and RAST models were used to model bicomponent equilibrium data. Monocomponent maximum adsorption capacities for AO and ST at pH 4.5 were 2.841 and 3.691 mmol g, and at pH 7.0 were 5.443 and 4.074 mmol g, respectively. Bicomponent maximum adsorption capacities for AO and ST at pH 7.0 were 1.230 and 3.728 mmol g. Adsorption enthalpy changes (ΔH) were obtained using isothermal titration calorimetry. The values of ΔH ranged from -18.83 to -5.60 kJ mol, suggesting that physisorption controlled the adsorption process. Desorption and re-adsorption of CTA was also evaluated.
在本系列研究的第三部分中,评估了碱性纺织染料吖啶橙(AO)和沙夫坦丁(ST)在单组分和双组分加标水溶液中在羧基化纤维素衍生物(CTA)上的吸附。吸附研究是作为溶液 pH、接触时间和初始染料浓度的函数进行的。吸附动力学数据通过单组分准一级(PFO)、准二级(PSO)、内扩散和 Boyd 动力学模型进行了建模,而 Corsel 的竞争动力学模型用于模拟双组分动力学数据。单组分吸附平衡数据通过 Langmuir、Sips、Fowler-Guggenhein、Hill de-Boer 和 Konda 模型进行了建模,而 IAST 和 RAST 模型用于模拟双组分平衡数据。在 pH 4.5 时,AO 和 ST 的单组分最大吸附容量分别为 2.841 和 3.691 mmol g,在 pH 7.0 时,AO 和 ST 的单组分最大吸附容量分别为 5.443 和 4.074 mmol g。在 pH 7.0 时,AO 和 ST 的双组分最大吸附容量分别为 1.230 和 3.728 mmol g。通过等温滴定微量热法获得吸附焓变(ΔH)。ΔH 的值范围从-18.83 到-5.60 kJ mol,表明物理吸附控制了吸附过程。还评估了 CTA 的解吸和再吸附。