Suppr超能文献

使用多种不相关的形态分析测定法进行复合功能预测。

Compound Functional Prediction Using Multiple Unrelated Morphological Profiling Assays.

机构信息

1 Computational Bioimaging and Bioinformatics, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France.

2 Biophenics High-Content Screening Laboratory, Institut Curie, PSL Research University, Paris, France.

出版信息

SLAS Technol. 2018 Jun;23(3):243-251. doi: 10.1177/2472630317740831. Epub 2017 Nov 3.

Abstract

Phenotypic cell-based assays have proven to be efficient at discovering first-in-class therapeutic drugs mainly because they allow for scanning a wide spectrum of possible targets at once. However, despite compelling methodological advances, posterior identification of a compound's mechanism of action (MOA) has remained difficult and highly refractory to automated analyses. Methods such as the cell painting assay and multiplexing fluorescent dyes to reveal broadly relevant cellular components were recently suggested for MOA prediction. We demonstrated that adding fluorescent dyes to a single assay has limited impact on MOA prediction accuracy, as monitoring only the nuclei stain could reach compelling levels of accuracy. This observation suggested that multiplexed measurements are highly correlated and nuclei stain could possibly reflect the general state of the cell. We then hypothesized that combining unrelated and possibly simple cell-based assays could bring a solution that would be biologically and technically more relevant to predict a drug target than using a single assay multiplexing dyes. We show that such a combination of past screen data could rationally be reused in screening facilities to train an ensemble classifier to predict drug targets and prioritize a possibly large list of unknown compound hits at once.

摘要

基于表型的细胞检测已被证明在发现首创类治疗药物方面非常有效,主要是因为它们能够一次扫描广泛的可能靶点。然而,尽管方法学上有了令人信服的进展,但对化合物作用机制 (MOA) 的后续鉴定仍然很困难,并且高度抗拒自动化分析。最近提出了细胞涂片检测和使用多重荧光染料来揭示广泛相关的细胞成分等方法来预测 MOA。我们证明,在单个检测中添加荧光染料对 MOA 预测准确性的影响有限,因为仅监测核染色就可以达到令人信服的准确性水平。这一观察结果表明,多重测量高度相关,核染色可能反映细胞的一般状态。然后,我们假设将不相关且可能简单的基于细胞的检测组合起来,可以提供一种解决方案,与使用单一检测多重染料相比,该解决方案更能预测药物靶点,更能反映生物学和技术的相关性。我们表明,过去筛选数据的这种组合可以在筛选设施中合理地重新用于训练集成分类器,以预测药物靶点并一次性优先处理可能大量的未知化合物命中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验