Suppr超能文献

形态学和基因表达谱分析为细胞状态的描绘提供了互补信息。

Morphology and gene expression profiling provide complementary information for mapping cell state.

机构信息

Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA.

Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Cell Syst. 2022 Nov 16;13(11):911-923.e9. doi: 10.1016/j.cels.2022.10.001. Epub 2022 Oct 28.

Abstract

Morphological and gene expression profiling can cost-effectively capture thousands of features in thousands of samples across perturbations by disease, mutation, or drug treatments, but it is unclear to what extent the two modalities capture overlapping versus complementary information. Here, using both the L1000 and Cell Painting assays to profile gene expression and cell morphology, respectively, we perturb human A549 lung cancer cells with 1,327 small molecules from the Drug Repurposing Hub across six doses, providing a data resource including dose-response data from both assays. The two assays capture both shared and complementary information for mapping cell state. Cell Painting profiles from compound perturbations are more reproducible and show more diversity but measure fewer distinct groups of features. Applying unsupervised and supervised methods to predict compound mechanisms of action (MOAs) and gene targets, we find that the two assays not only provide a partially shared but also a complementary view of drug mechanisms. Given the numerous applications of profiling in biology, our analyses provide guidance for planning experiments that profile cells for detecting distinct cell types, disease phenotypes, and response to chemical or genetic perturbations.

摘要

形态学和基因表达谱分析可以经济有效地捕捉到数千个特征,这些特征可以通过疾病、突变或药物治疗来影响数千个样本,但尚不清楚这两种模式在多大程度上捕捉到了重叠或互补的信息。在这里,我们分别使用 L1000 和 Cell Painting 测定法来分别分析基因表达和细胞形态,我们用来自 Drug Repurposing Hub 的 1327 种小分子在六种剂量下对人 A549 肺癌细胞进行了扰动,提供了一个包括两种测定法的剂量反应数据在内的数据集。这两种测定法都捕捉到了细胞状态的共享和互补信息。化合物扰动的 Cell Painting 图谱更具可重复性且显示出更多的多样性,但测量到的特征数量较少。应用无监督和有监督的方法来预测化合物的作用机制 (MOA) 和基因靶点,我们发现这两种测定法不仅提供了药物机制的部分共享视图,而且提供了互补的视图。鉴于分析在生物学中的众多应用,我们的分析为计划对细胞进行分析以检测不同的细胞类型、疾病表型以及对化学或遗传扰动的反应提供了指导。

相似文献

1
Morphology and gene expression profiling provide complementary information for mapping cell state.
Cell Syst. 2022 Nov 16;13(11):911-923.e9. doi: 10.1016/j.cels.2022.10.001. Epub 2022 Oct 28.
2
High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations.
Nat Methods. 2022 Dec;19(12):1550-1557. doi: 10.1038/s41592-022-01667-0. Epub 2022 Nov 7.
3
Linking chemicals, genes and morphological perturbations to diseases.
Toxicol Appl Pharmacol. 2023 Feb 15;461:116407. doi: 10.1016/j.taap.2023.116407. Epub 2023 Feb 2.
4
Predicting cell health phenotypes using image-based morphology profiling.
Mol Biol Cell. 2021 Apr 19;32(9):995-1005. doi: 10.1091/mbc.E20-12-0784. Epub 2021 Feb 3.
6
Assessing the performance of the Cell Painting assay across different imaging systems.
Cytometry A. 2023 Nov;103(11):915-926. doi: 10.1002/cyto.a.24786. Epub 2023 Oct 3.
7
Transforming L1000 profiles to RNA-seq-like profiles with deep learning.
BMC Bioinformatics. 2022 Sep 13;23(1):374. doi: 10.1186/s12859-022-04895-5.
9
Assessing the performance of the Cell Painting assay across different imaging systems.
bioRxiv. 2023 Jun 26:2023.02.15.528711. doi: 10.1101/2023.02.15.528711.
10
A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.
Cell. 2017 Nov 30;171(6):1437-1452.e17. doi: 10.1016/j.cell.2017.10.049.

引用本文的文献

3
Progress and new challenges in image-based profiling.
ArXiv. 2025 Aug 7:arXiv:2508.05800v1.
4
Morphological map of under- and overexpression of genes in human cells.
Nat Methods. 2025 Aug;22(8):1742-1752. doi: 10.1038/s41592-025-02753-9. Epub 2025 Aug 7.
7
Image-based, pooled phenotyping reveals multidimensional, disease-specific variant effects.
bioRxiv. 2025 Jul 5:2025.07.03.663081. doi: 10.1101/2025.07.03.663081.
8
Linking autism risk genes to morphological and pharmaceutical screening by high-content imaging: Future directions and opinion.
Psychiatry Clin Neurosci. 2025 Aug;79(8):435-446. doi: 10.1111/pcn.13847. Epub 2025 Jun 10.
9
A versatile information retrieval framework for evaluating profile strength and similarity.
Nat Commun. 2025 Jun 4;16(1):5181. doi: 10.1038/s41467-025-60306-2.
10
Morphological profiling data resource enables prediction of chemical compound properties.
iScience. 2025 Apr 16;28(5):112445. doi: 10.1016/j.isci.2025.112445. eCollection 2025 May 16.

本文引用的文献

1
Predicting compound activity from phenotypic profiles and chemical structures.
Nat Commun. 2023 Apr 8;14(1):1967. doi: 10.1038/s41467-023-37570-1.
2
Predicting reprogramming-related gene expression from cell morphology in human induced pluripotent stem cells.
Mol Biol Cell. 2023 May 1;34(5):ar45. doi: 10.1091/mbc.E22-06-0215. Epub 2023 Mar 22.
3
High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations.
Nat Methods. 2022 Dec;19(12):1550-1557. doi: 10.1038/s41592-022-01667-0. Epub 2022 Nov 7.
4
Proteomics in the pharmaceutical and biotechnology industry: a look to the next decade.
Expert Rev Proteomics. 2021 Jul;18(7):503-526. doi: 10.1080/14789450.2021.1962300. Epub 2021 Aug 12.
5
Image-based cell phenotyping with deep learning.
Curr Opin Chem Biol. 2021 Dec;65:9-17. doi: 10.1016/j.cbpa.2021.04.001. Epub 2021 May 21.
6
The evolving landscape of untargeted metabolomics.
Nutr Metab Cardiovasc Dis. 2021 Jun 7;31(6):1645-1652. doi: 10.1016/j.numecd.2021.01.008. Epub 2021 Jan 23.
7
Nuisance compounds in cellular assays.
Cell Chem Biol. 2021 Mar 18;28(3):356-370. doi: 10.1016/j.chembiol.2021.01.021. Epub 2021 Feb 15.
8
Predicting cell health phenotypes using image-based morphology profiling.
Mol Biol Cell. 2021 Apr 19;32(9):995-1005. doi: 10.1091/mbc.E20-12-0784. Epub 2021 Feb 3.
9
Image-based profiling for drug discovery: due for a machine-learning upgrade?
Nat Rev Drug Discov. 2021 Feb;20(2):145-159. doi: 10.1038/s41573-020-00117-w. Epub 2020 Dec 22.
10
The Gene Ontology resource: enriching a GOld mine.
Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334. doi: 10.1093/nar/gkaa1113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验