Suppr超能文献

用于流行病学数据的有序回归模型。

Ordinal regression models for epidemiologic data.

作者信息

Armstrong B G, Sloan M

机构信息

School of Occupational Health, Montreal, Quebec, Canada.

出版信息

Am J Epidemiol. 1989 Jan;129(1):191-204. doi: 10.1093/oxfordjournals.aje.a115109.

Abstract

Health status is often measured in epidemiologic studies on an ordinal scale, but data of this type are generally reduced for analysis to a single dichotomy. Several statistical models have been developed to make full use of information in ordinal response data, but have not been much used in analyzing epidemiologic studies. The authors discuss two of these statistical models--the cumulative odds model and the continuation ratio model. They may be interpreted in terms of odds ratios, can account for confounding variables, have clear and testable assumptions, and have parameters that may be estimated and hypotheses that may be tested using available statistical packages. However, calculations of asymptotic relative efficiency and results of simulations showed that simple logistic regression applied to dichotomized responses can in some realistic situations have more than 75% of the efficiency of ordinal regression models, but only if the ordinal scale is collapsed into a dichotomy close to the optimal point. The application of the proposed models to data from a study of chest x-rays of workers exposed to mineral fibers confirmed that they are easy to use and interpret, but gave results quite similar to those obtained using simple logistic regression after dichotomizing outcome in the conventional way.

摘要

在流行病学研究中,健康状况通常按有序尺度进行衡量,但这类数据在分析时一般会简化为单一的二分法。已经开发了几种统计模型来充分利用有序响应数据中的信息,但在分析流行病学研究中使用得并不多。作者讨论了其中两种统计模型——累积比数模型和连续比例模型。它们可以用比值比来解释,能够考虑混杂变量,有明确且可检验的假设,并且其参数可以估计,假设可以使用现有的统计软件包进行检验。然而,渐近相对效率的计算和模拟结果表明,应用于二分响应的简单逻辑回归在某些实际情况下可以达到有序回归模型效率的75%以上,但前提是有序尺度要合并为接近最佳点的二分法。将所提出的模型应用于对接触矿物纤维工人的胸部X光研究数据,证实了它们易于使用和解释,但得出的结果与以传统方式对结果进行二分后使用简单逻辑回归得到的结果非常相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验