Suppr超能文献

比较研究中有序结果的统计学评估。

Statistical assessment of ordinal outcomes in comparative studies.

作者信息

Scott S C, Goldberg M S, Mayo N E

机构信息

Divison of Clinical Epidemiology, Royal Victoria Hospital, Montréal, Québec, Canada.

出版信息

J Clin Epidemiol. 1997 Jan;50(1):45-55. doi: 10.1016/s0895-4356(96)00312-5.

Abstract

Ordinal regression is a relatively new statistical method developed for analyzing ranked outcomes. In the past, ranked scales have often been analyzed without making full use of the ordinality of the data or, alternatively, by assigning arbitrary numerical scores to the ranks. While ordinal regression models are now available to make full use of ranked data, they are not used widely. This article, directed to clinical researchers and epidemiologists, provides a description of the properties of these methods. Using ordinal measures of back pain in a follow-up study of adolescent idiopathic scoliosis, we illustrate the advantages of those methods and describe how to interpret the estimated parameters. Comparisons with binary logistic regression are made to show why a single dichotomization of the ordinal scale may lead to incorrect inferences. Two ordinal models (the proportional odds and the continuation ratio models) are discussed, and the goodness-of-fit of these models is examined. We conclude that ordinal regression is a tool that is powerful, simple to use, and produces an interpretable parameter that summarizes the effect between groups over all levels of the outcome.

摘要

有序回归是一种为分析排序结果而开发的相对较新的统计方法。过去,对于排序量表的分析往往没有充分利用数据的有序性,或者通过为排序赋予任意数值分数来进行分析。虽然现在有了有序回归模型可以充分利用排序数据,但它们并未得到广泛应用。本文面向临床研究人员和流行病学家,对这些方法的特性进行了描述。在一项青少年特发性脊柱侧凸的随访研究中,我们使用背痛的有序测量方法,阐述了这些方法的优势,并描述了如何解释估计参数。通过与二元逻辑回归进行比较,以说明为什么对有序量表进行单一二分法可能会导致错误的推断。讨论了两种有序模型(比例优势模型和连续比例模型),并检验了这些模型的拟合优度。我们得出结论,有序回归是一种强大、易于使用的工具,它能产生一个可解释的参数,该参数总结了结果所有水平上组间的效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验