Suppr超能文献

人是 RUNX1 在巨核细胞分化中的关键靶标。

Human is a key target of RUNX1 in megakaryocytic differentiation.

机构信息

Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Blood. 2018 Jan 11;131(2):191-201. doi: 10.1182/blood-2017-04-780379. Epub 2017 Nov 3.

Abstract

Megakaryocytes (MKs) in adult marrow produce platelets that play important roles in blood coagulation and hemostasis. Monoallelic mutations of the master transcription factor gene lead to familial platelet disorder (FPD) characterized by defective MK and platelet development. However, the molecular mechanisms of FPD remain unclear. Previously, we generated human induced pluripotent stem cells (iPSCs) from patients with FPD containing a nonsense mutation. Production of MKs from the FPD-iPSCs was reduced, and targeted correction of the mutation restored MK production. In this study, we used isogenic pairs of FPD-iPSCs and the MK differentiation system to identify RUNX1 target genes. Using integrative genomic analysis of hematopoietic progenitor cells generated from FPD-iPSCs, and mutation-corrected isogenic controls, we identified 2 gene sets the transcription of which is either up- or downregulated by RUNX1 in mutation-corrected iPSCs. Notably, expression was negatively controlled by RUNX1 via a novel regulatory DNA element within the locus, and we examined its involvement in MK generation. Specific inactivation of by an improved CRISPR-Cas9 system in human iPSCs enhanced megakaryopoiesis. Moreover, small molecules known to inhibit Notch signaling promoted MK generation from both normal human iPSCs and postnatal CD34 hematopoietic stem and progenitor cells. Our study newly identified as a RUNX1 target gene and revealed a previously unappreciated role of NOTCH4 signaling in promoting human megakaryopoiesis. Our work suggests that human iPSCs with monogenic mutations have the potential to serve as an invaluable resource for discovery of novel druggable targets.

摘要

巨核细胞(MKs)在成人骨髓中产生血小板,在血液凝固和止血中发挥重要作用。主转录因子基因的单等位基因突变导致家族性血小板疾病(FPD),其特征是 MK 和血小板发育缺陷。然而,FPD 的分子机制仍不清楚。此前,我们从携带 无义突变的 FPD 患者中生成了人类诱导多能干细胞(iPSCs)。FPD-iPSCs 产生的 MK 减少,而 突变的靶向校正恢复了 MK 的产生。在这项研究中,我们使用 FPD-iPSC 和 MK 分化系统的同基因对来鉴定 RUNX1 靶基因。通过对从 FPD-iPSCs 生成的造血祖细胞进行整合基因组分析,以及突变校正的同基因对照,我们鉴定了 2 个基因集,其转录在突变校正的 iPSC 中要么被 RUNX1 上调,要么被下调。值得注意的是,通过在基因座内的新调控 DNA 元件,RUNX1 负调控 的表达,我们研究了其在 MK 生成中的参与。在人类 iPSCs 中通过改进的 CRISPR-Cas9 系统特异性失活 ,增强了巨核细胞生成。此外,已知抑制 Notch 信号的小分子促进了正常人类 iPSCs 和出生后 CD34 造血干祖细胞的 MK 生成。我们的研究新鉴定了 作为 RUNX1 的靶基因,并揭示了 Notch4 信号在促进人类巨核细胞生成中的先前未被认识的作用。我们的工作表明,具有单基因突变的人类 iPSCs 有可能成为发现新的可成药靶标的宝贵资源。

相似文献

1
Human is a key target of RUNX1 in megakaryocytic differentiation.人是 RUNX1 在巨核细胞分化中的关键靶标。
Blood. 2018 Jan 11;131(2):191-201. doi: 10.1182/blood-2017-04-780379. Epub 2017 Nov 3.

引用本文的文献

7
Megakaryocytes as the Regulator of the Hematopoietic Vascular Niche.巨核细胞作为造血血管微环境的调节者。
Front Oncol. 2022 Jun 22;12:912060. doi: 10.3389/fonc.2022.912060. eCollection 2022.
8
Notch signaling pathway: architecture, disease, and therapeutics.Notch 信号通路:结构、疾病与治疗。
Signal Transduct Target Ther. 2022 Mar 24;7(1):95. doi: 10.1038/s41392-022-00934-y.

本文引用的文献

2
Role of RUNX1 in hematological malignancies.RUNX1在血液系统恶性肿瘤中的作用。
Blood. 2017 Apr 13;129(15):2070-2082. doi: 10.1182/blood-2016-10-687830. Epub 2017 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验