Suppr超能文献

一种用于预测微小RNA-疾病关联的深度集成模型。

A deep ensemble model to predict miRNA-disease association.

作者信息

Fu Laiyi, Peng Qinke

机构信息

Systems Engineering Institute, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, China.

出版信息

Sci Rep. 2017 Nov 3;7(1):14482. doi: 10.1038/s41598-017-15235-6.

Abstract

Cumulative evidence from biological experiments has confirmed that microRNAs (miRNAs) are related to many types of human diseases through different biological processes. It is anticipated that precise miRNA-disease association prediction could not only help infer potential disease-related miRNA but also boost human diagnosis and disease prevention. Considering the limitations of previous computational models, a more effective computational model needs to be implemented to predict miRNA-disease associations. In this work, we first constructed a human miRNA-miRNA similarity network utilizing miRNA-miRNA functional similarity data and heterogeneous miRNA Gaussian interaction profile kernel similarities based on the assumption that similar miRNAs with similar functions tend to be associated with similar diseases, and vice versa. Then, we constructed disease-disease similarity using disease semantic information and heterogeneous disease-related interaction data. We proposed a deep ensemble model called DeepMDA that extracts high-level features from similarity information using stacked autoencoders and then predicts miRNA-disease associations by adopting a 3-layer neural network. In addition to five-fold cross-validation, we also proposed another cross-validation method to evaluate the performance of the model. The results show that the proposed model is superior to previous methods with high robustness.

摘要

生物学实验的累积证据证实,微小RNA(miRNA)通过不同的生物学过程与多种人类疾病相关。预计精确的miRNA-疾病关联预测不仅有助于推断潜在的疾病相关miRNA,还能促进人类疾病的诊断和预防。考虑到先前计算模型的局限性,需要实施一种更有效的计算模型来预测miRNA-疾病关联。在这项工作中,我们首先基于功能相似的miRNA往往与相似的疾病相关联这一假设,利用miRNA- miRNA功能相似性数据和异质miRNA高斯相互作用谱核相似性构建了人类miRNA- miRNA相似性网络。然后,我们利用疾病语义信息和异质疾病相关相互作用数据构建了疾病-疾病相似性。我们提出了一种名为DeepMDA的深度集成模型,该模型使用堆叠自编码器从相似性信息中提取高级特征,然后采用三层神经网络预测miRNA-疾病关联。除了五折交叉验证,我们还提出了另一种交叉验证方法来评估模型的性能。结果表明,所提出的模型具有高稳健性,优于先前的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a02/5670180/6a5cdba1bb49/41598_2017_15235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验