Suppr超能文献

利用实验数据推断细胞迁移和增殖的无网格模型参数。

Inferring parameters for a lattice-free model of cell migration and proliferation using experimental data.

作者信息

Browning Alexander P, McCue Scott W, Binny Rachelle N, Plank Michael J, Shah Esha T, Simpson Matthew J

机构信息

School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.

Landcare Research, Lincoln, Canterbury, New Zealand; Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand; Te Pūnaha Matatini, a New Zealand Centre of Research Excellence, New Zealand.

出版信息

J Theor Biol. 2018 Jan 21;437:251-260. doi: 10.1016/j.jtbi.2017.10.032. Epub 2017 Nov 1.

Abstract

Collective cell spreading takes place in spatially continuous environments, yet it is often modelled using discrete lattice-based approaches. Here, we use data from a series of cell proliferation assays, with a prostate cancer cell line, to calibrate a spatially continuous individual based model (IBM) of collective cell migration and proliferation. The IBM explicitly accounts for crowding effects by modifying the rate of movement, direction of movement, and the rate of proliferation by accounting for pair-wise interactions. Taking a Bayesian approach we estimate the free parameters in the IBM using rejection sampling on three separate, independent experimental data sets. Since the posterior distributions for each experiment are similar, we perform simulations with parameters sampled from a new posterior distribution generated by combining the three data sets. To explore the predictive power of the calibrated IBM, we forecast the evolution of a fourth experimental data set. Overall, we show how to calibrate a lattice-free IBM to experimental data, and our work highlights the importance of interactions between individuals. Despite great care taken to distribute cells as uniformly as possible experimentally, we find evidence of significant spatial clustering over short distances, suggesting that standard mean-field models could be inappropriate.

摘要

集体细胞铺展发生在空间连续的环境中,但通常使用基于离散晶格的方法进行建模。在这里,我们使用来自一系列前列腺癌细胞系细胞增殖试验的数据,来校准一个基于个体的空间连续集体细胞迁移和增殖模型(IBM)。该IBM通过考虑成对相互作用,通过修改运动速率、运动方向和增殖速率来明确考虑拥挤效应。采用贝叶斯方法,我们在三个独立的实验数据集上使用拒绝采样来估计IBM中的自由参数。由于每个实验的后验分布相似,我们使用从通过组合这三个数据集生成的新后验分布中采样的参数进行模拟。为了探索校准后的IBM的预测能力,我们预测了第四个实验数据集的演变。总体而言,我们展示了如何将无晶格的IBM校准到实验数据,并且我们的工作强调了个体之间相互作用的重要性。尽管在实验中非常小心地尽可能均匀地分布细胞,但我们发现了短距离内显著空间聚集的证据,这表明标准的平均场模型可能不合适。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验