Shekaramiz Mohammad, Moon Todd K, Gunther Jacob H
ECE Department and Information Dynamics Laboratory, Utah State University.
Conf Rec Asilomar Conf Signals Syst Comput. 2016 Nov;2016:389-393. doi: 10.1109/ACSSC.2016.7869066. Epub 2017 Mar 6.
Recovery of sparse signals with unknown clustering pattern in the case of having partial erroneous prior knowledge on the supports of the signal is considered. In this case, we provide a modified sparse Bayesian learning model to incorporate prior knowledge and simultaneously learn the unknown clustering pattern. For this purpose, we add one more layer to support-aided sparse Bayesian learning algorithm (SA-SBL). This layer adds a prior on the shape parameters of Gamma distributions, those modeled to account for the precision of the solution elements. We make the shape parameters depend on the total variations on the estimated supports of the solution. Based on the simulation results, we show that the proposed algorithm is able to modify its erroneous prior knowledge on the supports of the solution and learn the clustering pattern of the true signal by filtering out the incorrect supports from the estimated support set.
考虑在对信号的支撑集具有部分错误先验知识的情况下,恢复具有未知聚类模式的稀疏信号。在这种情况下,我们提供一种改进的稀疏贝叶斯学习模型,以纳入先验知识并同时学习未知的聚类模式。为此,我们在支撑辅助稀疏贝叶斯学习算法(SA-SBL)上增加一层。这一层在伽马分布的形状参数上添加一个先验,这些伽马分布被建模用于考虑解元素的精度。我们使形状参数依赖于解的估计支撑集上的总变化。基于仿真结果,我们表明所提出的算法能够修正其对解的支撑集的错误先验知识,并通过从估计的支撑集中滤除不正确的支撑来学习真实信号的聚类模式。