Suppr超能文献

关于单测量向量的块稀疏解

On The Block-Sparse Solution of Single Measurement Vectors.

作者信息

Shekaramiz Mohammad, Moon Todd K, Gunther Jacob H

机构信息

ECE Department and Information Dynamics Laboratory, Utah State University.

出版信息

Conf Rec Asilomar Conf Signals Syst Comput. 2015 Nov;2015:508-512. doi: 10.1109/ACSSC.2015.7421180. Epub 2016 Feb 29.

Abstract

Finding the solution of single measurement vector (SMV) problem with an unknown block-sparsity structure is considered. Here, we propose a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. In order to encourage the block-sparsity structure, we incorporate a parameter called Sigma-Delta as a measure of clumpiness in the supports of the solution. Using the AMP framework reduces the computational load of the proposed SBL algorithm and as a result makes it faster. Furthermore, in terms of the mean-squared error between the true and the reconstructed solution, the algorithm demonstrates an encouraging improvement compared to the other algorithms.

摘要

考虑求解具有未知块稀疏结构的单测量向量(SMV)问题。在此,我们提出一种通过近似消息传递(AMP)框架简化的稀疏贝叶斯学习(SBL)算法。为了促进块稀疏结构,我们引入一个名为Sigma-Delta的参数,作为解的支撑中聚集程度的度量。使用AMP框架降低了所提出的SBL算法的计算量,从而使其速度更快。此外,就真实解与重构解之间的均方误差而言,该算法与其他算法相比有显著改进。

相似文献

1
On The Block-Sparse Solution of Single Measurement Vectors.
Conf Rec Asilomar Conf Signals Syst Comput. 2015 Nov;2015:508-512. doi: 10.1109/ACSSC.2015.7421180. Epub 2016 Feb 29.
2
AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing.
Ubiquitous Comput Electron Mob Commun Conf (UEMCON) IEEE Annu. 2016 Oct;2016. doi: 10.1109/UEMCON.2016.7777899. Epub 2016 Dec 12.
3
Bayesian Compressive Sensing of Sparse Signals with Unknown Clustering Patterns.
Entropy (Basel). 2019 Mar 5;21(3):247. doi: 10.3390/e21030247.
4
ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS.
2015 IEEE Signal Process Signal Process Educ Workshop SP SPE (2015). 2015 Aug;2015:220-225. doi: 10.1109/DSP-SPE.2015.7369556.
5
SPARSE BAYESIAN LEARNING BOOSTED BY PARTIAL ERRONEOUS SUPPORT KNOWLEDGE.
Conf Rec Asilomar Conf Signals Syst Comput. 2016 Nov;2016:389-393. doi: 10.1109/ACSSC.2016.7869066. Epub 2017 Mar 6.
6
Fast and robust Block-Sparse Bayesian learning for EEG source imaging.
Neuroimage. 2018 Jul 1;174:449-462. doi: 10.1016/j.neuroimage.2018.03.048. Epub 2018 Mar 27.
8
An Efficient Sparse Bayesian Learning Algorithm Based on Gaussian-Scale Mixtures.
IEEE Trans Neural Netw Learn Syst. 2022 Jul;33(7):3065-3078. doi: 10.1109/TNNLS.2020.3049056. Epub 2022 Jul 6.
9
Learned-SBL-GAMP based hybrid precoders/combiners in millimeter wave massive MIMO systems.
PLoS One. 2023 Sep 8;18(9):e0289868. doi: 10.1371/journal.pone.0289868. eCollection 2023.
10
Hierarchical Bayesian Approach For Jointly-Sparse Solution Of Multiple-Measurement Vectors.
Conf Rec Asilomar Conf Signals Syst Comput. 2014 Nov;2014:1962-1966. doi: 10.1109/ACSSC.2014.7094813. Epub 2015 Apr 27.

引用本文的文献

1
Bayesian Compressive Sensing of Sparse Signals with Unknown Clustering Patterns.
Entropy (Basel). 2019 Mar 5;21(3):247. doi: 10.3390/e21030247.
2
AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing.
Ubiquitous Comput Electron Mob Commun Conf (UEMCON) IEEE Annu. 2016 Oct;2016. doi: 10.1109/UEMCON.2016.7777899. Epub 2016 Dec 12.
3
SPARSE BAYESIAN LEARNING BOOSTED BY PARTIAL ERRONEOUS SUPPORT KNOWLEDGE.
Conf Rec Asilomar Conf Signals Syst Comput. 2016 Nov;2016:389-393. doi: 10.1109/ACSSC.2016.7869066. Epub 2017 Mar 6.

本文引用的文献

1
ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS.
2015 IEEE Signal Process Signal Process Educ Workshop SP SPE (2015). 2015 Aug;2015:220-225. doi: 10.1109/DSP-SPE.2015.7369556.
2
Hierarchical Bayesian Approach For Jointly-Sparse Solution Of Multiple-Measurement Vectors.
Conf Rec Asilomar Conf Signals Syst Comput. 2014 Nov;2014:1962-1966. doi: 10.1109/ACSSC.2014.7094813. Epub 2015 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验