Suppr超能文献

协同调控数据采集器:从转录组数据库开始实现基因注释自动化。

The Co-regulation Data Harvester: automating gene annotation starting from a transcriptome database.

作者信息

Tsypin Lev M, Turkewitz Aaron P

机构信息

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago IL, 60637.

出版信息

SoftwareX. 2017;6:165-171. doi: 10.1016/j.softx.2017.06.006. Epub 2017 Aug 16.

Abstract

Identifying co-regulated genes provides a useful approach for defining pathway-specific machinery in an organism. To be efficient, this approach relies on thorough genome annotation, a process much slower than genome sequencing , a unicellular eukaryote, has been a useful model organism and has a fully sequenced but sparsely annotated genome. One important resource for studying this organism has been an online transcriptomic database. We have developed an automated approach to gene annotation in the context of transcriptome data in , called the Co-regulation Data Harvester (CDH). Beginning with a gene of interest, the CDH identifies co-regulated genes by accessing the transcriptome database. It then identifies their closely related genes (orthologs) in other organisms by using reciprocal BLAST searches. Finally, it collates the annotations of those orthologs' functions, which provides the user with information to help predict the cellular role of the initial query. The CDH, which is freely available, represents a powerful new tool for analyzing cell biological pathways in . Moreover, to the extent that genes and pathways are conserved between organisms, the inferences obtained the CDH should be relevant, and can be explored, in many other systems.

摘要

识别共同调控的基因提供了一种有用的方法来定义生物体中特定途径的机制。为了有效,这种方法依赖于全面的基因组注释,而这一过程比基因组测序要慢得多。单细胞真核生物是一种有用的模式生物,其基因组已完全测序但注释稀少。研究这种生物的一个重要资源是一个在线转录组数据库。我们开发了一种在转录组数据背景下进行基因注释的自动化方法,称为共调控数据采集器(CDH)。从一个感兴趣的基因开始,CDH通过访问转录组数据库来识别共同调控的基因。然后,它通过双向BLAST搜索在其他生物体中识别它们的密切相关基因(直系同源基因)。最后,它整理这些直系同源基因功能的注释,为用户提供信息以帮助预测初始查询基因的细胞作用。免费提供的CDH是分析细胞生物学途径的一个强大新工具。此外,由于基因和途径在生物体之间是保守的,通过CDH获得的推断在许多其他系统中应该是相关的并且可以被探索。

相似文献

1
The Co-regulation Data Harvester: automating gene annotation starting from a transcriptome database.
SoftwareX. 2017;6:165-171. doi: 10.1016/j.softx.2017.06.006. Epub 2017 Aug 16.
2
Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics.
Database (Oxford). 2013 Mar 12;2013:bat008. doi: 10.1093/database/bat008. Print 2013.
3
Tetrahymena Comparative Genomics Database (TCGD): a community resource for Tetrahymena.
Database (Oxford). 2019 Jan 1;2019. doi: 10.1093/database/baz029.
4
Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D500-3. doi: 10.1093/nar/gkj054.
7
Curated BLAST for Genomes.
mSystems. 2019 Mar 26;4(2). doi: 10.1128/mSystems.00072-19. eCollection 2019 Mar-Apr.
8
[Analysis of gene expression of Tetrahymena thermophila treated with Panax japonicas].
Zhongguo Zhong Yao Za Zhi. 2019 Jun;44(12):2580-2587. doi: 10.19540/j.cnki.cjcmm.20190304.001.
9
Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote.
PLoS Biol. 2006 Sep;4(9):e286. doi: 10.1371/journal.pbio.0040286.
10
Transcriptator: An Automated Computational Pipeline to Annotate Assembled Reads and Identify Non Coding RNA.
PLoS One. 2015 Nov 18;10(11):e0140268. doi: 10.1371/journal.pone.0140268. eCollection 2015.

引用本文的文献

1
Inferring gene-pathway associations from consolidated transcriptome datasets: an interactive gene network explorer for .
NAR Genom Bioinform. 2025 May 27;7(2):lqaf067. doi: 10.1093/nargab/lqaf067. eCollection 2025 Jun.
3
An apical membrane complex for triggering rhoptry exocytosis and invasion in Toxoplasma.
EMBO J. 2022 Nov 17;41(22):e111158. doi: 10.15252/embj.2022111158. Epub 2022 Oct 17.
4
Proteins that control the geometry of microtubules at the ends of cilia.
J Cell Biol. 2018 Dec 3;217(12):4298-4313. doi: 10.1083/jcb.201804141. Epub 2018 Sep 14.

本文引用的文献

2
A Parallel G Quadruplex-Binding Protein Regulates the Boundaries of DNA Elimination Events of Tetrahymena thermophila.
PLoS Genet. 2016 Mar 7;12(3):e1005842. doi: 10.1371/journal.pgen.1005842. eCollection 2016 Mar.
3
Programmed Genome Rearrangements in Tetrahymena.
Microbiol Spectr. 2014 Dec;2(6). doi: 10.1128/microbiolspec.MDNA3-0012-2014.
6
Evolutionary cell biology: two origins, one objective.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):16990-4. doi: 10.1073/pnas.1415861111. Epub 2014 Nov 17.
7
An aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila.
Mol Biol Cell. 2014 Aug 15;25(16):2444-60. doi: 10.1091/mbc.E14-03-0833. Epub 2014 Jun 18.
8
Nup50 is required for cell differentiation and exhibits transcription-dependent dynamics.
Mol Biol Cell. 2014 Aug 15;25(16):2472-84. doi: 10.1091/mbc.E14-04-0865. Epub 2014 Jun 18.
9
A domesticated PiggyBac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in Tetrahymena.
PLoS Genet. 2013;9(12):e1004032. doi: 10.1371/journal.pgen.1004032. Epub 2013 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验