Suppr超能文献

从整合的转录组数据集中推断基因-通路关联:用于……的交互式基因网络浏览器

Inferring gene-pathway associations from consolidated transcriptome datasets: an interactive gene network explorer for .

作者信息

Bertagna Michael A, Bright Lydia J, Ye Fei, Jiang Yu-Yang, Sarkar Debolina, Pradhan Ajay, Kumar Santosh, Gao Shan, Turkewitz Aaron P, Tsypin Lev M Z

机构信息

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA.

Department of Biology, State University of New York at New Paltz, New Paltz, NY, USA.

出版信息

bioRxiv. 2024 Dec 17:2024.12.12.627356. doi: 10.1101/2024.12.12.627356.

Abstract

Although an established model organism, remains comparatively inaccessible to high throughput screens, and alternative bioinformatic approaches still rely on unconnected datasets and outdated algorithms. Here, we report a new approach to consolidating RNA-seq and microarray data based on a systematic exploration of parameters and computational controls, enabling us to infer functional gene associations from their co-expression patterns. To illustrate the power of this approach, we took advantage of new data regarding a previously studied pathway, the biogenesis of a secretory organelle called the mucocyst. Our untargeted clustering approach recovered over 80% of the genes that were previously verified to play a role in mucocyst biogenesis. Furthermore, we tested four new genes that we predicted to be mucocyst-associated based on their co-expression and found that knocking out each of them results in mucocyst secretion defects. We also found that our approach succeeds in clustering genes associated with several other cellular pathways that we evaluated based on prior literature. We present the Gene Network Explorer (TGNE) as an interactive tool for genetic hypothesis generation and functional annotation in this organism and as a framework for building similar tools for other systems.

摘要

尽管它是一种成熟的模式生物,但对于高通量筛选来说,仍然相对难以获取,并且替代的生物信息学方法仍然依赖于不相关的数据集和过时的算法。在这里,我们报告了一种基于对参数和计算控制的系统探索来整合RNA测序和微阵列数据的新方法,使我们能够从共表达模式推断功能基因关联。为了说明这种方法的威力,我们利用了关于一个先前研究过的途径的新数据,即一种称为黏液囊泡的分泌细胞器的生物发生。我们的非靶向聚类方法找回了超过80%先前已证实参与黏液囊泡生物发生的基因。此外,我们测试了四个基于共表达预测与黏液囊泡相关的新基因,发现敲除其中每一个都会导致黏液囊泡分泌缺陷。我们还发现我们的方法成功地对与我们根据先前文献评估的其他几个细胞途径相关的基因进行了聚类。我们展示了基因网络浏览器(TGNE)作为在这种生物中进行遗传假设生成和功能注释的交互式工具,以及作为为其他系统构建类似工具的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d16/11661410/07984a517a12/nihpp-2024.12.12.627356v2-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验