Suppr超能文献

腹部器官中是否存在超过两种扩散成分的证据?——一项针对健康志愿者的磁共振成像研究。

Is there evidence for more than two diffusion components in abdominal organs? - A magnetic resonance imaging study in healthy volunteers.

作者信息

Wurnig Moritz C, Germann Manon, Boss Andreas

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.

出版信息

NMR Biomed. 2018 Jan;31(1). doi: 10.1002/nbm.3852. Epub 2017 Nov 3.

Abstract

The most commonly applied model for the description of diffusion-weighted imaging (DWI) data in perfused organs is bicompartmental intravoxel incoherent motion (IVIM) analysis. In this study, we assessed the ground truth of underlying diffusion components in healthy abdominal organs using an extensive DWI protocol and subsequent computation of apparent diffusion coefficient 'spectra', similar to the computation of previously described T relaxation spectra. Diffusion datasets of eight healthy subjects were acquired in a 3-T magnetic resonance scanner using 68 different b values during free breathing (equidistantly placed in the range 0-1005 s/mm ). Signal intensity curves as a function of the b value were analyzed in liver, spleen and kidneys using non-negative least-squares fitting to a distribution of decaying exponential functions with minimum amplitude energy regularization. In all assessed organs, the typical slow- and fast-diffusing components of the IVIM model were detected [liver: true diffusion D = (1.26 ± 0.01) × 10 mm /s, pseudodiffusion D* = (270 ± 44) × 10 mm /s; kidney cortex: D = (2.26 ± 0.07) × 10 mm /s, D* = (264 ± 78) × 10 mm /s; kidney medulla: D = (1.57 ± 0.28) × 10 mm /s, D* = (168 ± 18) × 10 mm /s; spleen: D = (0.91 ± 0.01) × 10 mm /s, D* = (69.8 ± 0.50) × 10 mm /s]. However, in the liver and kidney, a third component between D and D* was found [liver: D' = (43.8 ± 5.9) × 10 mm /s; kidney cortex: D' = (23.8 ± 11.5) × 10 mm /s; kidney medulla: D' = (5.23 ± 0.93) × 10 mm /s], whereas no third component was detected in the spleen. Fitting with a diffusion kurtosis model did not lead to a better fit of the resulting curves to the acquired data compared with apparent diffusion coefficient spectrum analysis. For a most accurate description of diffusion properties in the liver and the kidneys, a more sophisticated model seems to be required including three diffusion components.

摘要

用于描述灌注器官中扩散加权成像(DWI)数据的最常用模型是双室体素内不相干运动(IVIM)分析。在本研究中,我们使用广泛的DWI方案并随后计算表观扩散系数“谱”,评估了健康腹部器官中潜在扩散成分的真实情况,这类似于先前描述的T弛豫谱的计算。在3-T磁共振扫描仪中,对8名健康受试者在自由呼吸期间使用68个不同的b值(等距分布在0-1005 s/mm范围内)采集扩散数据集。使用非负最小二乘法拟合衰减指数函数分布并采用最小幅度能量正则化,分析肝脏、脾脏和肾脏中作为b值函数的信号强度曲线。在所有评估的器官中,均检测到IVIM模型典型的慢扩散和快扩散成分[肝脏:真实扩散系数D = (1.26 ± 0.01) × 10⁻³ mm²/s,伪扩散系数D* = (270 ± 44) × 10⁻³ mm²/s;肾皮质:D = (2.26 ± 0.07) × 10⁻³ mm²/s,D* = (264 ± 78) × 10⁻³ mm²/s;肾髓质:D = (1.57 ± 0.28) × 10⁻³ mm²/s,D* = (168 ± 18) × 10⁻³ mm²/s;脾脏:D = (0.91 ± 0.01) × 10⁻³ mm²/s,D* = (69.8 ± 0.50) × 10⁻³ mm²/s]。然而,在肝脏和肾脏中,发现了介于D和D*之间的第三个成分[肝脏:D' = (43.8 ± 5.9) × 10⁻³ mm²/s;肾皮质:D' = (23.8 ± 11.5) × 10⁻³ mm²/s;肾髓质:D' = (5.23 ± 0.93) × 10⁻³ mm²/s],而在脾脏中未检测到第三个成分。与表观扩散系数谱分析相比,用扩散峰度模型拟合并不能使所得曲线更好地拟合采集到的数据。为了最准确地描述肝脏和肾脏中的扩散特性,似乎需要一个更复杂的模型,包括三个扩散成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验