Suppr超能文献

深度学习如何拟合扩散加权磁共振成像的体素内不相干运动模型。

Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI.

机构信息

Centre for Big Data Research in Health, UNSW, Sydney, Australia.

Joint Department of Physics, The Institute of Cancer Research, London, United Kingdom.

出版信息

Magn Reson Med. 2020 Jan;83(1):312-321. doi: 10.1002/mrm.27910. Epub 2019 Aug 7.

Abstract

PURPOSE

This prospective clinical study assesses the feasibility of training a deep neural network (DNN) for intravoxel incoherent motion (IVIM) model fitting to diffusion-weighted MRI (DW-MRI) data and evaluates its performance.

METHODS

In May 2011, 10 male volunteers (age range, 29-53 years; mean, 37) underwent DW-MRI of the upper abdomen on 1.5T and 3.0T MR scanners. Regions of interest in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla were delineated independently by 2 readers. DNNs were trained for IVIM model fitting using these data; results were compared to least-squares and Bayesian approaches to IVIM fitting. Intraclass correlation coefficients (ICCs) were used to assess consistency of measurements between readers. Intersubject variability was evaluated using coefficients of variation (CVs). The fitting error was calculated based on simulated data, and the average fitting time of each method was recorded.

RESULTS

DNNs were trained successfully for IVIM parameter estimation. This approach was associated with high consistency between the 2 readers (ICCs between 50% and 97%), low intersubject variability of estimated parameter values (CVs between 9.2 and 28.4), and the lowest error when compared with least-squares and Bayesian approaches. Fitting by DNNs was several orders of magnitude quicker than the other methods, but the networks may need to be retrained for different acquisition protocols or imaged anatomical regions.

CONCLUSION

DNNs are recommended for accurate and robust IVIM model fitting to DW-MRI data. Suitable software is available for download.

摘要

目的

本前瞻性临床研究评估了训练深度神经网络(DNN)用于对扩散加权磁共振成像(DW-MRI)数据进行体素内不相干运动(IVIM)模型拟合的可行性,并评估了其性能。

方法

2011 年 5 月,10 名男性志愿者(年龄范围 29-53 岁;平均 37 岁)在 1.5T 和 3.0T 磁共振扫描仪上进行了上腹部 DW-MRI 检查。由 2 名读者分别对左、右肝叶、胰腺、脾脏、肾皮质和肾髓质进行感兴趣区勾画。使用这些数据对 DNN 进行 IVIM 模型拟合训练;结果与 IVIM 拟合的最小二乘法和贝叶斯方法进行了比较。使用组内相关系数(ICCs)评估读者间测量的一致性。使用变异系数(CVs)评估受试者间的变异性。根据模拟数据计算拟合误差,并记录每种方法的平均拟合时间。

结果

成功地训练了 DNN 进行 IVIM 参数估计。与最小二乘法和贝叶斯方法相比,这种方法与 2 名读者之间具有高度的一致性(ICC 介于 50%至 97%之间),估计参数值的受试者间变异性较低(CV 介于 9.2%至 28.4%之间),拟合误差最低。与其他方法相比,DNN 的拟合速度快几个数量级,但可能需要针对不同的采集方案或成像解剖区域对网络进行重新训练。

结论

推荐使用 DNN 对 DW-MRI 数据进行准确且稳健的 IVIM 模型拟合。可提供适合的软件供下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验