Suppr超能文献

采用活动双词进行身体活动表型分析及其与 BMI 的关联。

Physical activity phenotyping with activity bigrams, and their association with BMI.

机构信息

MRC Integrative Epidemiology Unit (IEU).

School of Social and Community Medicine.

出版信息

Int J Epidemiol. 2017 Dec 1;46(6):1857-1870. doi: 10.1093/ije/dyx093.

Abstract

BACKGROUND

Analysis of physical activity usually focuses on a small number of summary statistics derived from accelerometer recordings: average counts per minute and the proportion of time spent in moderate-vigorous physical activity or in sedentary behaviour. We show how bigrams, a concept from the field of text mining, can be used to describe how a person's activity levels change across (brief) time points. These variables can, for instance, differentiate between two people spending the same time in moderate activity, where one person often stays in moderate activity from one moment to the next and the other does not.

METHODS

We use data on 4810 participants of the Avon Longitudinal Study of Parents and Children (ALSPAC). We generate a profile of bigram frequencies for each participant and test the association of each frequency with body mass index (BMI), as an exemplar.

RESULTS

We found several associations between changes in bigram frequencies and BMI. For instance, a one standard deviation decrease in the number of adjacent minutes in sedentary then moderate activity (or vice versa), with a corresponding increase in the number of adjacent minutes in moderate then vigorous activity (or vice versa), was associated with a 2.36 kg/m2 lower BMI [95% confidence interval (CI): -3.47, -1.26], after accounting for the time spent in sedentary, low, moderate and vigorous activity.

CONCLUSIONS

Activity bigrams are novel variables that capture how a person's activity changes from one moment to the next. These variables can be used to investigate how sequential activity patterns associate with other traits.

摘要

背景

体力活动分析通常侧重于从加速度计记录中得出的少数几个综合统计数据:每分钟平均计数和中高强度体力活动或久坐行为所花费的时间比例。我们展示了双词(bigram),这是文本挖掘领域的一个概念,如何用于描述一个人的活动水平如何在(短暂)时间点上发生变化。例如,这些变量可以区分两个人在中度活动中花费相同的时间,其中一个人从一个时刻到下一个时刻经常保持在中度活动中,而另一个人则不会。

方法

我们使用了来自阿冯纵向研究父母和孩子(ALSPAC)的 4810 名参与者的数据。我们为每个参与者生成了双词频率的概况,并测试了每个频率与体重指数(BMI)的关联,作为范例。

结果

我们发现双词频率的变化与 BMI 之间存在几种关联。例如,与相应的中度然后剧烈活动(反之亦然)相邻分钟的久坐时间减少一个标准差,与中度然后剧烈活动(反之亦然)相邻分钟的中度活动增加一个标准差,与 BMI 降低 2.36kg/m2 相关[95%置信区间(CI):-3.47,-1.26],在考虑到久坐、低强度、中等强度和高强度活动所花费的时间后。

结论

活动双词是新颖的变量,可捕捉一个人从一个时刻到下一个时刻的活动变化。这些变量可用于研究连续活动模式与其他特征的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a353/5837541/12070a5a83b4/dyx093f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验