Suppr超能文献

通过相互作用组模型分析深入了解糖皮质激素受体信号传导

Insight into glucocorticoid receptor signalling through interactome model analysis.

作者信息

Bakker Emyr, Tian Kun, Mutti Luciano, Demonacos Constantinos, Schwartz Jean-Marc, Krstic-Demonacos Marija

机构信息

Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom.

Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

出版信息

PLoS Comput Biol. 2017 Nov 6;13(11):e1005825. doi: 10.1371/journal.pcbi.1005825. eCollection 2017 Nov.

Abstract

Glucocorticoid hormones (GCs) are used to treat a variety of diseases because of their potent anti-inflammatory effect and their ability to induce apoptosis in lymphoid malignancies through the glucocorticoid receptor (GR). Despite ongoing research, high glucocorticoid efficacy and widespread usage in medicine, resistance, disease relapse and toxicity remain factors that need addressing. Understanding the mechanisms of glucocorticoid signalling and how resistance may arise is highly important towards improving therapy. To gain insight into this we undertook a systems biology approach, aiming to generate a Boolean model of the glucocorticoid receptor protein interaction network that encapsulates functional relationships between the GR, its target genes or genes that target GR, and the interactions between the genes that interact with the GR. This model named GEB052 consists of 52 nodes representing genes or proteins, the model input (GC) and model outputs (cell death and inflammation), connected by 241 logical interactions of activation or inhibition. 323 changes in the relationships between model constituents following in silico knockouts were uncovered, and steady-state analysis followed by cell-based microarray genome-wide model validation led to an average of 57% correct predictions, which was taken further by assessment of model predictions against patient microarray data. Lastly, semi-quantitative model analysis via microarray data superimposed onto the model with a score flow algorithm has also been performed, which demonstrated significantly higher correct prediction ratios (average of 80%), and the model has been assessed as a predictive clinical tool using published patient microarray data. In summary we present an in silico simulation of the glucocorticoid receptor interaction network, linked to downstream biological processes that can be analysed to uncover relationships between GR and its interactants. Ultimately the model provides a platform for future development both by directing laboratory research and allowing for incorporation of further components, encapsulating more interactions/genes involved in glucocorticoid receptor signalling.

摘要

糖皮质激素(GCs)因其强大的抗炎作用以及通过糖皮质激素受体(GR)诱导淋巴系统恶性肿瘤细胞凋亡的能力,被用于治疗多种疾病。尽管研究仍在进行,且糖皮质激素在医学上具有高效性和广泛应用,但耐药性、疾病复发和毒性仍是需要解决的因素。了解糖皮质激素信号传导机制以及耐药性产生的原因对于改善治疗至关重要。为深入了解这一点,我们采用了系统生物学方法,旨在生成一个糖皮质激素受体蛋白相互作用网络的布尔模型,该模型涵盖了GR与其靶基因或靶向GR的基因之间的功能关系,以及与GR相互作用的基因之间的相互作用。这个名为GEB052的模型由代表基因或蛋白质的52个节点、模型输入(GC)和模型输出(细胞死亡和炎症)组成,通过241个激活或抑制的逻辑相互作用连接。通过计算机模拟基因敲除,发现模型组成部分之间的关系有323处变化,随后进行稳态分析,并基于细胞的微阵列全基因组模型验证得出平均57%的正确预测率,通过将模型预测与患者微阵列数据进行评估进一步验证了这一结果。最后,还通过使用评分流算法将微阵列数据叠加到模型上进行了半定量模型分析,结果显示正确预测率显著更高(平均80%),并且已使用已发表的患者微阵列数据将该模型评估为一种预测性临床工具。总之,我们展示了糖皮质激素受体相互作用网络的计算机模拟,该模拟与下游生物学过程相关联,可通过分析揭示GR与其相互作用分子之间的关系。最终,该模型通过指导实验室研究以及允许纳入更多组件,为未来发展提供了一个平台,这些组件包含了更多参与糖皮质激素受体信号传导的相互作用/基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0237/5690696/c114761672d9/pcbi.1005825.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验