Suppr超能文献

p53 建模作为间皮瘤患者分层和新型治疗方法鉴定的途径。

p53 modeling as a route to mesothelioma patients stratification and novel therapeutic identification.

机构信息

School of Environment and Life Sciences, University of Salford, Salford, UK.

School of Medicine, University of Central Lancashire, Preston, UK.

出版信息

J Transl Med. 2018 Oct 13;16(1):282. doi: 10.1186/s12967-018-1650-0.

Abstract

BACKGROUND

Malignant pleural mesothelioma (MPM) is an orphan disease that is difficult to treat using traditional chemotherapy, an approach which has been effective in other types of cancer. Most chemotherapeutics cause DNA damage leading to cell death. Recent discoveries have highlighted a potential role for the p53 tumor suppressor in this disease. Given the pivotal role of p53 in the DNA damage response, here we investigated the predictive power of the p53 interactome model for MPM patients' stratification.

METHODS

We used bioinformatics approaches including omics type analysis of data from MPM cells and from MPM patients in order to predict which pathways are crucial for patients' survival. Analysis of the PKT206 model of the p53 network was validated by microarrays from the Mero-14 MPM cell line and RNA-seq data from 71 MPM patients, whilst statistical analysis was used to identify the deregulated pathways and predict therapeutic schemes by linking the affected pathway with the patients' clinical state.

RESULTS

In silico simulations demonstrated successful predictions ranging from 52 to 85% depending on the drug, algorithm or sample used for validation. Clinical outcomes of individual patients stratified in three groups and simulation comparisons identified 30 genes that correlated with survival. In patients carrying wild-type p53 either treated or not treated with chemotherapy, FEN1 and MMP2 exhibited the highest inverse correlation, whereas in untreated patients bearing mutated p53, SIAH1 negatively correlated with survival. Numerous repositioned and experimental drugs targeting FEN1 and MMP2 were identified and selected drugs tested. Epinephrine and myricetin, which target FEN1, have shown cytotoxic effect on Mero-14 cells whereas marimastat and batimastat, which target MMP2 demonstrated a modest but significant inhibitory effect on MPM cell migration. Finally, 8 genes displayed correlation with disease stage, which may have diagnostic implications.

CONCLUSIONS

Clinical decisions related to MPM personalized therapy based on individual patients' genetic profile and previous chemotherapeutic treatment could be reached using computational tools and the predictions reported in this study upon further testing in animal models.

摘要

背景

恶性胸膜间皮瘤(MPM)是一种孤儿病,使用传统化疗治疗效果不佳,而传统化疗在其他类型的癌症中是有效的。大多数化疗药物会导致 DNA 损伤,从而导致细胞死亡。最近的发现强调了 p53 肿瘤抑制因子在这种疾病中的潜在作用。鉴于 p53 在 DNA 损伤反应中的关键作用,我们在这里研究了 p53 相互作用组模型对 MPM 患者分层的预测能力。

方法

我们使用了生物信息学方法,包括对 MPM 细胞和 MPM 患者的数据进行组学分析,以预测哪些途径对患者的生存至关重要。PKT206 p53 网络模型的分析通过 Mero-14 MPM 细胞系的微阵列和 71 名 MPM 患者的 RNA-seq 数据进行了验证,而统计分析用于通过将受影响的途径与患者的临床状态联系起来,识别失调的途径并预测治疗方案。

结果

基于用于验证的药物、算法或样本,计算机模拟成功预测了 52%至 85%的结果。根据分组和模拟比较,将 30 个基因与生存相关联,对个体患者的临床结局进行了分层。在携带野生型 p53 的患者中,无论是接受化疗治疗还是未接受化疗治疗,FEN1 和 MMP2 表现出最高的负相关,而在未接受化疗治疗且携带突变型 p53 的患者中,SIAH1 与生存呈负相关。针对 FEN1 和 MMP2 的多种重新定位和实验性药物已被识别和选择,并对测试药物进行了测试。针对 FEN1 的肾上腺素和杨梅素表现出对 Mero-14 细胞的细胞毒性作用,而针对 MMP2 的 marimastat 和 batimastat 对 MPM 细胞迁移表现出适度但显著的抑制作用。最后,8 个基因与疾病分期相关,这可能具有诊断意义。

结论

基于个体患者的遗传特征和先前的化疗治疗,使用计算工具和本研究报告的预测,可以为 MPM 个体化治疗做出临床决策,这些预测需要在动物模型中进一步测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dd9/6186085/b47ddf15e769/12967_2018_1650_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验