Suppr超能文献

连接理论和数据以理解重组率进化。

Connecting theory and data to understand recombination rate evolution.

机构信息

Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0469.

Abstract

Meiotic recombination is necessary for successful gametogenesis in most sexually reproducing organisms and is a fundamental genomic parameter, influencing the efficacy of selection and the fate of new mutations. The molecular and evolutionary functions of recombination should impose strong selective constraints on the range of recombination rates. Yet, variation in recombination rate is observed on a variety of genomic and evolutionary scales. In the past decade, empirical studies have described variation in recombination rate within genomes, between individuals, between sexes, between populations and between species. At the same time, theoretical work has provided an increasingly detailed picture of the evolutionary advantages to recombination. Perhaps surprisingly, the causes of natural variation in recombination rate remain poorly understood. We argue that empirical and theoretical approaches to understand the evolution of recombination have proceeded largely independently of each other. Most models that address the evolution of recombination rate were created to explain the evolutionary advantage of recombination rather than quantitative differences in rate among individuals. Conversely, most empirical studies aim to describe variation in recombination rate, rather than to test evolutionary hypotheses. In this Perspective, we argue that efforts to integrate the rich bodies of empirical and theoretical work on recombination rate are crucial to moving this field forward. We provide new directions for the development of theory and the production of data that will jointly close this gap.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.

摘要

减数分裂重组对于大多数有性生殖生物的配子发生是必要的,是一个基本的基因组参数,影响选择的效率和新突变的命运。重组的分子和进化功能应该对重组率的范围施加强烈的选择约束。然而,在各种基因组和进化尺度上都观察到了重组率的变化。在过去的十年中,实证研究已经描述了基因组内、个体之间、性别之间、种群之间和物种之间重组率的变化。与此同时,理论工作也为重组的进化优势提供了越来越详细的描述。也许令人惊讶的是,重组率自然变异的原因仍未得到很好的理解。我们认为,理解重组进化的经验和理论方法在很大程度上彼此独立。大多数解决重组率进化的模型都是为了解释重组的进化优势而创建的,而不是个体之间的重组率的定量差异。相反,大多数实证研究旨在描述重组率的变化,而不是检验进化假说。在这篇观点文章中,我们认为,努力整合重组率的丰富的经验和理论工作,对于推动这一领域的发展至关重要。我们为理论的发展和数据的产生提供了新的方向,这将共同弥合这一差距。本文是主题为“有性生物中重组率变异的进化原因和后果”的一部分。

相似文献

1
Connecting theory and data to understand recombination rate evolution.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0469.
2
Variation in recombination frequency and distribution across eukaryotes: patterns and processes.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0455.
3
Coevolution between transposable elements and recombination.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0458.
5
Background selection as null hypothesis in population genomics: insights and challenges from studies.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0471.
6
The Red Queen model of recombination hot-spot evolution: a theoretical investigation.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0463.
7
Evolution of the genomic rate of recombination in mammals.
Evolution. 2008 Feb;62(2):276-94. doi: 10.1111/j.1558-5646.2007.00278.x. Epub 2007 Dec 6.
8
The impact of recombination on human mutation load and disease.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0465.
9
Direct and indirect consequences of meiotic recombination: implications for genome evolution.
Trends Genet. 2012 Mar;28(3):101-9. doi: 10.1016/j.tig.2011.11.002. Epub 2011 Dec 7.
10
Genome-wide variation in recombination rate in Eucalyptus.
BMC Genomics. 2016 Aug 9;17:590. doi: 10.1186/s12864-016-2884-y.

引用本文的文献

6
The adaptive value of recombination in resolving intralocus sexual conflict by gene duplication.
Proc Biol Sci. 2025 Jan;292(2039):20242629. doi: 10.1098/rspb.2024.2629. Epub 2025 Jan 22.
7
Genetics of Recombination Rate Variation Within and Between Species.
J Evol Biol. 2024 Dec 16. doi: 10.1093/jeb/voae158.

本文引用的文献

1
Recombination rate plasticity: revealing mechanisms by design.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0459.
2
Coevolution between transposable elements and recombination.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0458.
3
Evolution of recombination rates between sex chromosomes.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0456.
4
MUTATION LOAD AND THE SURVIVAL OF SMALL POPULATIONS.
Evolution. 1990 Nov;44(7):1725-1737. doi: 10.1111/j.1558-5646.1990.tb05244.x.
5
Variation in Recombination Rate: Adaptive or Not?
Trends Genet. 2017 May;33(5):364-374. doi: 10.1016/j.tig.2017.03.003. Epub 2017 Mar 27.
6
Recombination rate variation in mice from an isolated island.
Mol Ecol. 2017 Jan;26(2):457-470. doi: 10.1111/mec.13932. Epub 2016 Dec 21.
7
Variation and Evolution of the Meiotic Requirement for Crossing Over in Mammals.
Genetics. 2017 Jan;205(1):155-168. doi: 10.1534/genetics.116.192690. Epub 2016 Nov 11.
8
The evolution of recombination rates in finite populations during ecological speciation.
Proc Biol Sci. 2016 Oct 26;283(1841). doi: 10.1098/rspb.2016.1243.
9
High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree.
PLoS Genet. 2016 May 24;12(5):e1006044. doi: 10.1371/journal.pgen.1006044. eCollection 2016 May.
10
Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.
PLoS Genet. 2016 Apr 22;12(4):e1005906. doi: 10.1371/journal.pgen.1005906. eCollection 2016 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验