Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, IL, 60611.
Department of Physiology, David Geffen School of Medicine, Los Angeles, CA 10833.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):E10178-E10186. doi: 10.1073/pnas.1713563114. Epub 2017 Nov 6.
Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α-Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells ( ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α-Na,K-ATPase construct bearing an S18A (α-S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α-S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.
生物体已经进化出适应机制来应对细胞生存的应激。在急性低氧应激下,细胞会下调能量消耗酶,如 Na,K-ATPase。肺泡上皮细胞(AEC)暴露于低氧后几分钟内,蛋白激酶 C ζ(PKCζ)磷酸化α-Na,K-ATPase 亚基,并触发其内吞作用,这一过程独立于缺氧诱导因子(HIF)。然而,Na,K-ATPase 的活性对于细胞内稳态至关重要。HIF 诱导血红素氧化的 IRP2 泛素连接酶 1L(HOIL-1L),导致 PKCζ 降解。在这里,我们报告了 AEC 对长时间低氧的一种生存适应机制,其中 PKCζ 的降解允许质膜 Na,K-ATPase 稳定在接近正常氧水平的 50%,防止其过度下调和细胞死亡。缺乏肺上皮细胞 HOIL-1L 的小鼠()对低氧更加敏感,因为它们表达更高水平的 PKCζ,因此质膜 Na,K-ATPase 水平更低,这增加了细胞死亡并加重了肺损伤。在 AEC 中,表达一种携带 S18A(α-S18A)突变的α-Na,K-ATPase 构建体,该突变阻止了 PKCζ 的磷酸化,使 Na,K-ATPase 在质膜稳定,并防止缺氧诱导的细胞死亡,即使在缺乏 HOIL-1L 的情况下也是如此。体内过表达α-S18A 突变 Na,K-ATPase 的腺病毒挽救了 小鼠对低氧性肺损伤的敏感性增强。这些数据表明,在严重低氧时 Na,K-ATPase 的稳定是一个依赖 HIF 的过程,涉及 PKCζ 的降解。因此,我们提供了一个重要的适应机制的证据,严重低氧时,停止质膜 Na,K-ATPase 的过度下调可防止细胞死亡和肺损伤。