Suppr超能文献

巨核细胞与多倍体化

Megakaryocyte and polyploidization.

作者信息

Mazzi Stefania, Lordier Larissa, Debili Najet, Raslova Hana, Vainchenker William

机构信息

INSERM UMR1170, Equipe labellisée LNNC, Gustave Roussy, Villejuif, France; Université Paris Saclay, UMR1170, Gustave Roussy, France; Université Paris-Diderot, Paris, France; Institut National de la Transfusion Sanguine, Paris, France.

INSERM UMR1170, Equipe labellisée LNNC, Gustave Roussy, Villejuif, France; Université Paris Saclay, UMR1170, Gustave Roussy, France; Université Paris-Diderot, Paris, France; Institut National de la Transfusion Sanguine, Paris, France.

出版信息

Exp Hematol. 2018 Jan;57:1-13. doi: 10.1016/j.exphem.2017.10.001. Epub 2017 Oct 27.

Abstract

In mammals, platelets are produced in the blood by cytoplasmic fragmentation of megakaryocytes (MKs). Platelet production is thus dependent on both the MK number and size. During differentiation, MKs switch from a division by mitosis to polyploidization by endomitosis to increase their size. The endomitotic process includes several successive rounds of DNA replication with an entry in mitosis with a failure in late cytokinesis and a defect in karyokinesis. This leads to a giant cell with a modal ploidy at 16N and one multilobulated nucleus. The entire genome is duplicated several times and all alleles remain functional producing a hypermetabolic cell. A defect in abscission explains the cytokinesis failure and is related to an altered accumulation of actomyosin at the cleavage furrow as a consequence of both a low local RhoA activity and silencing of the MYH10 gene. This mechanism is regulated by transcription factors that govern differentiation explaining the intricacies of both processes. However, the endomitotic cell cycle regulation is still incompletely understood, particularly mitosis entry, escape to the tetraploid checkpoint, and defect in karyokinesis. Polyploidization is regulated during ontogeny, the first embryonic MKs being 2N. The molecular mechanism of this embryo-fetal/adult transition is beginning to be understood. In physiological conditions, MK ploidy is increased by an enhanced platelet demand through the thrombopoietin/myeloproliferative leukemia axis. In numerous hematologic malignancies, MK ploidy decreases, but it is always associated with a defect in MK differentiation. It has been proposed that polyploidization induction could be a treatment for some malignant MK disorders.

摘要

在哺乳动物中,血小板由巨核细胞(MKs)的细胞质分裂产生于血液中。因此,血小板的产生依赖于巨核细胞的数量和大小。在分化过程中,巨核细胞从通过有丝分裂进行分裂转变为通过核内有丝分裂进行多倍体化以增大其大小。核内有丝分裂过程包括几轮连续的DNA复制,进入有丝分裂但后期胞质分裂失败且核分裂存在缺陷。这导致形成一个具有16N众数倍性和一个多叶核的巨型细胞。整个基因组被复制数次,所有等位基因仍保持功能,产生一个高代谢细胞。分裂失败的缺陷解释了胞质分裂的失败,并且与由于局部RhoA活性低和MYH10基因沉默导致的肌动球蛋白在分裂沟处的积累改变有关。该机制由控制分化的转录因子调节,这解释了这两个过程的复杂性。然而,核内有丝分裂细胞周期调控仍未完全被理解,特别是有丝分裂的进入、逃避四倍体检查点以及核分裂缺陷。多倍体化在个体发育过程中受到调控,最初的胚胎巨核细胞为2N。这种胚胎 - 胎儿/成人转变的分子机制正开始被理解。在生理条件下,通过血小板生成素/骨髓增殖性白血病轴,增强的血小板需求会增加巨核细胞的倍性。在许多血液系统恶性肿瘤中,巨核细胞倍性降低,但这总是与巨核细胞分化缺陷相关。有人提出诱导多倍体化可能是治疗某些恶性巨核细胞疾病的一种方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验