Suppr超能文献

炔烃苯环化反应在新型芳香架构合成中的应用。

Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures.

机构信息

Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853, United States.

出版信息

Acc Chem Res. 2017 Nov 21;50(11):2776-2788. doi: 10.1021/acs.accounts.7b00385. Epub 2017 Nov 7.

Abstract

Aromatic compounds and polymers are integrated into organic field effect transistors, light-emitting diodes, photovoltaic devices, and redox-flow batteries. These compounds and materials feature increasingly complex designs, and substituents influence energy levels, bandgaps, solution conformation, and crystal packing, all of which impact performance. However, many polycyclic aromatic hydrocarbons of interest are difficult to prepare because their substitution patterns lie outside the scope of current synthetic methods, as strategies for functionalizing benzene are often unselective when applied to naphthalene or larger systems. For example, cross-coupling and nucleophilic aromatic substitution reactions rely on prefunctionalized arenes, and even directed metalation methods most often modify positions near Lewis basic sites. Similarly, electrophilic aromatic substitutions access single regioisomers under substrate control. Cycloadditions provide a convergent route to densely functionalized aromatic compounds that compliment the above methods. After surveying cycloaddition reactions that might be used to modify the conjugated backbone of poly(phenylene ethynylene)s, we discovered that the Asao-Yamamoto benzannulation reaction is notably efficient. Although this reaction had been reported a decade earlier, its scope and usefulness for synthesizing complex aromatic systems had been under-recognized. This benzannulation reaction combines substituted 2-(phenylethynyl)benzaldehydes and substituted alkynes to form 2,3-substituted naphthalenes. The reaction tolerates a variety of sterically congested alkynes, making it well-suited for accessing poly- and oligo(ortho-arylene)s and contorted hexabenzocoronenes. In many cases in which asymmetric benzaldehyde and alkyne cycloaddition partners are used, the reaction is regiospecific based on the electronic character of the alkyne substrate. Recognizing these desirable features, we broadened the substrate scope to include silyl- and halogen-substituted alkynes. Through a combined experimental and computational approach, we have elucidated mechanistic insight and key principles that govern the regioselectivity outcome of the benzannulation of structurally diverse alkynes. We have applied these methods to prepare sterically hindered, shape-persistent aromatic systems, heterocyclic aromatic compounds, functionalized 2-aryne precursors, polyheterohalogenated naphthalenes, ortho-arylene foldamers, and graphene nanoribbons. As a result of these new synthetic avenues, aromatic structures with interesting properties were uncovered such as ambipolar charge transport in field effect transistors based on our graphene nanoribbons, conformational aspects of ortho-arylene architectures resulting from intramolecular π-stacking, and modulation of frontier molecular orbitals via protonation of heteroatom containing aromatic systems. Given the availability of many substituted 2-(phenylethynyl)benzaldehydes and the regioselectivity of the benzannulation reaction, naphthalenes can be prepared with control of the substitution pattern at seven of the eight substitutable positions. Researchers in a range of fields are likely to benefit directly from newly accessible molecular and polymeric systems derived from polyfunctionalized naphthalenes.

摘要

芳香族化合物和聚合物被整合到有机场效应晶体管、发光二极管、光伏器件和氧化还原流电池中。这些化合物和材料的设计越来越复杂,取代基影响能级、带隙、溶液构象和晶体堆积,所有这些都影响性能。然而,许多感兴趣的多环芳烃由于其取代模式超出了当前合成方法的范围而难以制备,因为用于苯的官能化策略应用于萘或更大的体系时往往没有选择性。例如,交叉偶联和亲核芳香取代反应依赖于预官能化的芳烃,即使是导向金属化方法通常也只能修饰路易斯碱性位点附近的位置。同样,亲电芳香取代反应在底物控制下只能得到单区域异构体。环加成反应提供了一种构建稠合的功能化芳香族化合物的收敛途径,这与上述方法相辅相成。在调查了可能用于修饰聚(苯乙炔)共轭主链的环加成反应后,我们发现 Asao-Yamamoto 苯并环化反应效率显著。尽管该反应早在十年前就已报道,但它在合成复杂芳香体系方面的范围和实用性尚未得到充分认识。该苯并环化反应将取代的 2-(苯乙炔基)苯甲醛和取代的炔烃结合在一起,形成 2,3-取代的萘。该反应可耐受各种空间位阻较大的炔烃,因此非常适合用于合成多芳基和寡芳基以及扭曲的六苯并蒄。在使用不对称苯甲醛和炔烃环加成反应物的许多情况下,反应基于炔烃底物的电子性质是区域特异性的。认识到这些理想的特性,我们拓宽了底物范围,包括硅基和卤素取代的炔烃。通过结合实验和计算方法,我们阐明了控制结构多样的炔烃苯并环化区域选择性结果的机理见解和关键原则。我们已经将这些方法应用于制备空间位阻大、形状保持的芳香族体系、杂环芳香族化合物、功能化 2-芳基前体、多卤代萘、邻芳基折叠体和石墨烯纳米带。由于这些新的合成途径,发现了具有有趣性质的芳香族结构,例如基于我们的石墨烯纳米带的场效应晶体管中的双极电荷输运、分子内π堆积导致的邻芳基结构的构象方面,以及通过质子化含有杂原子的芳香族系统来调制前沿分子轨道。鉴于许多取代的 2-(苯乙炔基)苯甲醛的可用性以及苯并环化反应的区域选择性,通过控制八个可取代位置中的七个位置的取代模式,可以制备萘。在多官能化萘的基础上,来自不同领域的研究人员可能会直接受益于新获得的分子和聚合物系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验