Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1, 40225 Düsseldorf, Germany.
Medicinal Sciences, Pfizer, Inc. , 1 Portland Street, Cambridge, Massachusetts 02139, United States.
J Chem Theory Comput. 2017 Dec 12;13(12):6343-6357. doi: 10.1021/acs.jctc.7b00529. Epub 2017 Nov 27.
Allostery describes the functional coupling between sites in biomolecules. Recently, the role of changes in protein dynamics for allosteric communication has been highlighted. A quantitative and predictive description of allostery is fundamental for understanding biological processes. Here, we integrate an ensemble-based perturbation approach with the analysis of biomolecular rigidity and flexibility to construct a model of dynamic allostery. Our model, by definition, excludes the possibility of conformational changes, evaluates static, not dynamic, properties of molecular systems, and describes allosteric effects due to ligand binding in terms of a novel free-energy measure. We validated our model on three distinct biomolecular systems: eglin c, protein tyrosine phosphatase 1B, and the lymphocyte function-associated antigen 1 domain. In all cases, it successfully identified key residues for signal transmission in very good agreement with the experiment. It correctly and quantitatively discriminated between positively or negatively cooperative effects for one of the systems. Our model should be a promising tool for the rational discovery of novel allosteric drugs.
变构作用描述了生物分子中位点之间的功能耦合。最近,蛋白质动力学变化在变构通讯中的作用得到了强调。对变构作用进行定量和预测性描述是理解生物过程的基础。在这里,我们将基于集合的扰动方法与生物分子刚性和柔性的分析相结合,构建了一个动态变构作用模型。根据定义,我们的模型排除了构象变化的可能性,评估分子系统的静态而非动态特性,并根据一种新的自由能度量来描述配体结合引起的变构效应。我们在三个不同的生物分子系统上验证了我们的模型:eglin c、蛋白酪氨酸磷酸酶 1B 和淋巴细胞功能相关抗原 1 结构域。在所有情况下,它都成功地识别出信号传递的关键残基,与实验结果非常吻合。它正确且定量地区分了其中一个系统的正或负协同效应。我们的模型应该是合理发现新型变构药物的有前途的工具。