Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States.
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.
Elife. 2018 Jun 7;7:e36307. doi: 10.7554/eLife.36307.
Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here, we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function.
变构是蛋白质的固有特性,但揭示变构信号如何传播的机制仍然具有挑战性。更清楚地了解这种内在的电路将为调节蛋白质功能提供新的机会。在这里,我们通过结合多种温度的 X 射线晶体学实验和数百个小分子片段浸泡的结构测定,确定了蛋白质酪氨酸磷酸酶 1B(PTP1B)的变构位点。新的建模方法揭示了蛋白质和配体的“隐藏”低占据构象状态。我们的结果集中在与活性位点 WPD 环构象偶联的变构位点上,这些位点是片段结合的热点。用共价连接的分子或突变靶向这些位点中的一个,可变构抑制酶活性。总的来说,这项工作表明,通过多温度晶体学揭示的大分子结构的整体性质如何阐明变构机制,并为蛋白质功能的远程控制开辟新的途径。