Suppr超能文献

锂自放电及其预防:通过原位电化学扫描透射电子显微镜的直接可视化。

Lithium Self-Discharge and Its Prevention: Direct Visualization through In Situ Electrochemical Scanning Transmission Electron Microscopy.

机构信息

Argonne National Laboratory , Lemont, Illinois 60439, United States.

Energy & Environmental Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.

出版信息

ACS Nano. 2017 Nov 28;11(11):11194-11205. doi: 10.1021/acsnano.7b05513. Epub 2017 Nov 13.

Abstract

To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. We conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence of a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAlS coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. Furthermore, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.

摘要

为了理解控制电池中锂金属负极低纵横比锂沉积形态的机制,我们通过纳米尺度原位电化学扫描透射电子显微镜(EC-STEM)和在最近开发的有前途的溶剂化电解质中的宏观电池电化学实验直接观察了锂金属的沉积和剥离行为,该电解质为 4 M 双(氟磺酰基)酰亚胺锂在 1,2-二甲氧基乙烷中的溶液。与在相同电解质中发表的硬币电池研究相反,我们的实验在原位观察时揭示了低库仑效率和不均匀的 Li 形态。我们得出的结论是,Li 沉积物的库仑效率和形态的这种差异取决于压缩锂分离器界面的存在,正如我们通过宏观电化学实验(不在透射电子显微镜中)所证实的那样。我们的数据表明,电池压缩改变了固体电解质界面的形成方式,这可能是压缩提高形态和库仑效率的原因。此外,在原位 EC-STEM 实验中,我们观察到了溶剂化电解质中纳米级自放电的直接证据(在电隔离状态下)。这种自放电在宏观尺度上得到了重复,但电极压缩时自放电不那么严重,这可能是由于在压缩存在下形成了更钝化和耐腐蚀的固体电解质界面。通过将溶剂化电解质与保护性 LiAlS 涂层结合,我们表明在沉积过程中 Li 成核密度增加,导致形态均匀性提高。此外,在有涂层的循环曲线的休息期间,自放电被抑制,这通过 EC-STEM 得到证实,并通过硬币电池数据得到确认。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验