Materials Science and Technology Division and ‡Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.
Nano Lett. 2015 Mar 11;15(3):2011-8. doi: 10.1021/nl5048626. Epub 2015 Feb 26.
The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase (SEI) formation and to track Li nucleation and growth mechanisms from a standard organic battery electrolyte (LiPF6 in EC:DMC), we used in situ electrochemical scanning transmission electron microscopy (ec-S/TEM) to perform controlled electrochemical potential sweep measurements while simultaneously imaging site-specific structures resulting from electrochemical reactions. A combined quantitative electrochemical measurement and STEM imaging approach is used to demonstrate that chemically sensitive annular dark field STEM imaging can be used to estimate the density of the evolving SEI and to identify Li-containing phases formed in the liquid cell. We report that the SEI is approximately twice as dense as the electrolyte as determined from imaging and electron scattering theory. We also observe site-specific locations where Li nucleates and grows on the surface and edge of the glassy carbon electrode. Lastly, this report demonstrates the investigative power of quantitative nanoscale imaging combined with electrochemical measurements for studying fluid-solid interfaces and their evolving chemistries.
锂离子电池的性能特性与其内在的纳米级界面电化学反应密切相关。为了探究固体电解质界面(SEI)形成的机制,并从标准有机电池电解质(EC:DMC 中的 LiPF6)中追踪 Li 的成核和生长机制,我们使用原位电化学扫描透射电子显微镜(ec-S/TEM)来进行受控电化学电势扫描测量,同时对电化学反应产生的特定位置结构进行成像。采用一种结合定量电化学测量和 STEM 成像的方法来证明,化学敏感的环形暗场 STEM 成像可用于估计不断演变的 SEI 的密度,并识别在液体池中形成的含 Li 相。我们报告说,根据成像和电子散射理论,SEI 的密度大约是电解质的两倍。我们还观察到在玻璃碳电极的表面和边缘上 Li 成核和生长的特定位置。最后,本报告展示了定量纳米级成像与电化学测量相结合用于研究流体-固体界面及其不断变化的化学性质的研究能力。