Jabs E W, Goble C A, Cutting G R
Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.
Proc Natl Acad Sci U S A. 1989 Jan;86(1):202-6. doi: 10.1073/pnas.86.1.202.
To analyze the macromolecular organization of human centromeric regions, we used alpha-satellite, or alphoid, repetitive DNA sequences specific to the centromeres of human chromosomes 6 (D6Z1), X (XC), and Y (YC-2) and the technique of pulsed-field gel electrophoresis. Genomic DNA from 24 normal, unrelated individuals was digested and separated into fragments ranging from 23 kilobases (kb) to 2 megabases (Mb) in length. Digestion with 12 different restriction enzymes with 4- to 8-base-pair recognition sequences and hybridization with alphoid sequences revealed chromosome-specific hybridization patterns. Similarities in the organization of the centromeric regions of the three chromosomes included NotI, SfiI, and SalI fragments of greater than 2 Mb and Sau3A1 and Alu I fragments of less than 150 kb. Each restriction enzyme with a 6-base-pair recognition sequence (Ava II, BamHI, HindIII, Hpa I, Pst I, Sal I, Sst I, and Xba I) detected polymorphic DNA fragments of 50 kb to 2 Mb. Forty percent or more of the individuals screened revealed a unique hybridization pattern with these enzymes and at least one of the three chromosome-specific alphoid probes. Five individuals differed from one another in hybridization pattern for each of the three enzymes HindIII, HpaI, and SstI and for each of the three centromeric probes. All 24 individuals could be distinguished on the basis of unique hybridization patterns with only two enzymes and one chromosome-specific alphoid probe. Family studies showed that these polymorphisms are inherited. The high frequency of these macro restriction fragment length polymorphisms illustrates the high degree of variability of the centromeric region among normal individuals and demonstrates its usefulness for DNA fingerprinting and pericentromeric mapping by linkage analysis.
为了分析人类着丝粒区域的大分子组织,我们使用了α卫星(或α类卫星)重复DNA序列,这些序列特异于人类6号染色体(D6Z1)、X染色体(XC)和Y染色体(YC - 2)的着丝粒,并采用了脉冲场凝胶电泳技术。来自24名正常、无亲缘关系个体的基因组DNA被消化,并分离成长度从23千碱基(kb)到2兆碱基(Mb)的片段。用12种识别序列为4至8个碱基对的不同限制酶进行消化,并与α类卫星序列杂交,揭示了染色体特异性杂交模式。这三条染色体着丝粒区域组织的相似之处包括大于2 Mb的NotI、SfiI和SalI片段以及小于150 kb的Sau3A1和Alu I片段。每种识别序列为6个碱基对的限制酶(Ava II、BamHI、HindIII、Hpa I、Pst I、Sal I、Sst I和Xba I)都检测到了50 kb至2 Mb的多态性DNA片段。筛查的个体中40%或更多显示出与这些酶以及三种染色体特异性α类卫星探针中的至少一种有独特的杂交模式。在HindIII、HpaI和SstI这三种酶以及三种着丝粒探针中的每一种上,有5个个体的杂交模式彼此不同。仅用两种酶和一种染色体特异性α类卫星探针,就可以根据独特的杂交模式区分所有24个个体。家系研究表明这些多态性是可遗传的。这些宏观限制性片段长度多态性的高频率说明了正常个体着丝粒区域的高度变异性,并证明了其在DNA指纹识别和通过连锁分析进行着丝粒周围图谱绘制中的有用性。